ﻻ يوجد ملخص باللغة العربية
The parallel machine scheduling problem has been a popular topic for many years due to its theoretical and practical importance. This paper addresses the robust makespan optimization problem on unrelated parallel machine scheduling with sequence-dependent setup times, where the processing times are uncertain, and the only knowledge is the intervals they take values from. We propose a robust optimization model with min-max regret criterion to formulate this problem. To solve this problem, we prove that the worst-case scenario with the maximum regret for a given solution belongs to a finite set of extreme scenarios. Based on this theoretical analysis, the procedure to obtain the maximum regret is proposed and an enhanced regret evaluation method (ERE) is designed to accelerate this process. A multi-start decomposition-based heuristic algorithm (MDH) is proposed to solve this problem. High-quality initial solutions and an upper bound are examined to help better solve the problem. Computational experiments are conducted to justify the performance of these methods.
In this paper the problem of scheduling of jobs on parallel machines under incompatibility relation is considered. In this model a binary relation between jobs is given and no two jobs that are in the relation can be scheduled on the same machine. In
Given n jobs with release dates, deadlines and processing times we consider the problem of scheduling them on m parallel machines so as to minimize the total energy consumed. Machines can enter a sleep state and they consume no energy in this state.
This paper studies distributionally robust optimization (DRO) when the ambiguity set is given by moments for the distributions. The objective and constraints are given by polynomials in decision variables. We reformulate the DRO with equivalent momen
To ensure a successful bid while maximizing of profits, generation companies (GENCOs) need a self-scheduling strategy that can cope with a variety of scenarios. So distributionally robust opti-mization (DRO) is a good choice because that it can provi
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity set