ﻻ يوجد ملخص باللغة العربية
This paper addresses the challenging black-box adversarial attack problem, where only classification confidence of a victim model is available. Inspired by consistency of visual saliency between different vision models, a surrogate model is expected to improve the attack performance via transferability. By combining transferability-based and query-based black-box attack, we propose a surprisingly simple baseline approach (named SimBA++) using the surrogate model, which significantly outperforms several state-of-the-art methods. Moreover, to efficiently utilize the query feedback, we update the surrogate model in a novel learning scheme, named High-Order Gradient Approximation (HOGA). By constructing a high-order gradient computation graph, we update the surrogate model to approximate the victim model in both forward and backward pass. The SimBA++ and HOGA result in Learnable Black-Box Attack (LeBA), which surpasses previous state of the art by considerable margins: the proposed LeBA significantly reduces queries, while keeping higher attack success rates close to 100% in extensive ImageNet experiments, including attacking vision benchmarks and defensive models. Code is open source at https://github.com/TrustworthyDL/LeBA.
Machine learning classifiers are critically prone to evasion attacks. Adversarial examples are slightly modified inputs that are then misclassified, while remaining perceptively close to their originals. Last couple of years have witnessed a striking
We propose a simple and highly query-efficient black-box adversarial attack named SWITCH, which has a state-of-the-art performance in the score-based setting. SWITCH features a highly efficient and effective utilization of the gradient of a surrogate
Deep neural networks (DNN) have shown great success in many computer vision applications. However, they are also known to be susceptible to backdoor attacks. When conducting backdoor attacks, most of the existing approaches assume that the targeted D
Adversarial attacks on graphs have attracted considerable research interests. Existing works assume the attacker is either (partly) aware of the victim model, or able to send queries to it. These assumptions are, however, unrealistic. To bridge the g
Deep learning models are increasingly used in mobile applications as critical components. Unlike the program bytecode whose vulnerabilities and threats have been widely-discussed, whether and how the deep learning models deployed in the applications