ﻻ يوجد ملخص باللغة العربية
Extrinsic perturbation always exists in multiple sensors. In this paper, we focus on the extrinsic uncertainty in multi-LiDAR systems for 3D object detection. We first analyze the influence of extrinsic perturbation on geometric tasks with two basic examples. To minimize the detrimental effect of extrinsic perturbation, we propagate an uncertainty prior on each point of input point clouds, and use this information to boost an approach for 3D geometric tasks. Then we extend our findings to propose a multi-LiDAR 3D object detector called MLOD. MLOD is a two-stage network where the multi-LiDAR information is fused through various schemes in stage one, and the extrinsic perturbation is handled in stage two. We conduct extensive experiments on a real-world dataset, and demonstrate both the accuracy and robustness improvement of MLOD. The code, data and supplementary materials are available at: https://ram-lab.com/file/site/mlod
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric c
The strong demand of autonomous driving in the industry has lead to strong interest in 3D object detection and resulted in many excellent 3D object detection algorithms. However, the vast majority of algorithms only model single-frame data, ignoring
In this work, we propose an efficient and accurate monocular 3D detection framework in single shot. Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component. Four edges of a 2D box p
In the past few years, we have witnessed rapid development of autonomous driving. However, achieving full autonomy remains a daunting task due to the complex and dynamic driving environment. As a result, self-driving cars are equipped with a suite of