ﻻ يوجد ملخص باللغة العربية
The advances in the fields of scanning probe microscopy, scanning tunneling spectroscopy, point contact spectroscopy and point contact Andreev reflection spectroscopy to study the properties of conventional and quantum materials at cryogenic conditions have prompted the development of nanopositioners and nanoscanners with enhanced spatial resolution. Piezoelectric-actuator stacks as nanopositioners with working strokes $>100~mumathrm{m}$ and positioning resolution $sim$(1-10) nm are desirable for both basic research and industrial applications. However, information on the performance of most commercial piezoelectric-actuators in cryogenic environment and in the presence of magnetic fields in excess of 5,T is generally not available. In particular, the magnitude, rate and the associated hysteresis of the piezo-displacement at cryogenic temperatures are the most relevant parameters that determine whether a particular piezoelectric-actuator can be used as a nanopositioner. Here, the design and realization of an experimental set-up based on interferometric techniques to characterize a commercial piezoelectric-actuator over a temperature range of $2~mathrm{K}leq{T}leq260~mathrm{K}$ and magnetic fields up to 6,T is presented. The studied piezoelectric-actuator has a maximum displacement of $30~mumathrm{m}$ at room temperature for a maximum driving voltage of 75,V, which reduces to $1.2~mumathrm{m}$ with an absolute hysteresis of $left(9.1pm3.3right)~mathrm{nm}$ at $T=2,mathrm{K}$. The magnetic field is shown to have no substantial effect on the piezo properties of the studied piezoelectric-actuator stack.
We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controll
Tunneling magnetoresistance (TMR) in a vertical manganite junction was investigated by low-temperature scanning laser microscopy (LTSLM) allowing to determine the local relative magnetization M orientation of the two electrodes as a function of magni
Magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As have been investigated. Measurements at low temperature (50 mK) and high magnetic field (<= 27 T) have been employed in order to determine the hole concentration p = 3.5x10^20 cm ^-
The low-temperature and high-magnetic field (2K, 8T) powder x-ray diffraction (LTHM-XRD) measurements have been carried out at different temperatures (T) and magnetic fields (H) to investigate the structural phase diagram for phase separated La0.175P
Different from conventional electroactive polymers, here we firstly present a new facile actuator made from aluminum alloy. The high-frequency electrically induced flapping motion was characterized under varied physical factors. This electroactuation