ﻻ يوجد ملخص باللغة العربية
Attention-based sequence-to-sequence modeling provides a powerful and elegant solution for applications that need to map one sequence to a different sequence. Its success heavily relies on the availability of large amounts of training data. This presents a challenge for speech applications where labelled speech data is very expensive to obtain, such as automatic speech recognition (ASR) and speech translation (ST). In this study, we propose a general multi-task learning framework to leverage text data for ASR and ST tasks. Two auxiliary tasks, a denoising autoencoder task and machine translation task, are proposed to be co-trained with ASR and ST tasks respectively. We demonstrate that representing text input as phoneme sequences can reduce the difference between speech and text inputs, and enhance the knowledge transfer from text corpora to the speech to text tasks. Our experiments show that the proposed method achieves a relative 10~15% word error rate reduction on the English Librispeech task compared with our baseline, and improves the speech translation quality on the MuST-C tasks by 3.6~9.2 BLEU.
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational lat
Having numerous potential applications and great impact, end-to-end speech translation (ST) has long been treated as an independent task, failing to fully draw strength from the rapid advances of its sibling - text machine translation (MT). With text
We introduce a technique for augmenting neural text-to-speech (TTS) with lowdimensional trainable speaker embeddings to generate different voices from a single model. As a starting point, we show improvements over the two state-ofthe-art approaches f
Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model po