ﻻ يوجد ملخص باللغة العربية
Neural Machine Translation (NMT) models have demonstrated strong state of the art performance on translation tasks where well-formed training and evaluation data are provided, but they remain sensitive to inputs that include errors of various types. Specifically, in the context of long-form speech translation systems, where the input transcripts come from Automatic Speech Recognition (ASR), the NMT models have to handle errors including phoneme substitutions, grammatical structure, and sentence boundaries, all of which pose challenges to NMT robustness. Through in-depth error analysis, we show that sentence boundary segmentation has the largest impact on quality, and we develop a simple data augmentation strategy to improve segmentation robustness.
State-of-the-art Transformer-based neural machine translation (NMT) systems still follow a standard encoder-decoder framework, in which source sentence representation can be well done by an encoder with self-attention mechanism. Though Transformer-ba
In this paper, we propose a new adversarial augmentation method for Neural Machine Translation (NMT). The main idea is to minimize the vicinal risk over virtual sentences sampled from two vicinity distributions, of which the crucial one is a novel vi
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only obs
The paper investigates the feasibility of confidence estimation for neural machine translation models operating at the high end of the performance spectrum. As a side product of the data annotation process necessary for building such models we propos
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency, which makes the Transformer-based NMT achieve state-of-the-art result