ﻻ يوجد ملخص باللغة العربية
Super-high resolution laser-based angle-resolved photoemission measurements are carried out on LiFeAs superconductor to investigate its electron dynamics. Three energy scales at $sim$20 meV, $sim$34 meV and $sim$55 meV are revealed for the first time in the electron self-energy both in the superconducting state and normal state. The $sim$20 meV and $sim$34 meV scales can be attributed to the coupling of electrons with sharp bosonic modes which are most likely phonons. These observations provide definitive evidence on the existence of mode coupling in iron-based superconductors.
We performed scanning tunneling spectroscopic experiments on hole-doped NdBa$_2$Cu$_3$O$_{7-delta}$. The d$I$/d$V$ curves obtained at 4.2 K are asymmetric with clear peak-dip and hump structures. Energy derivatives of these curves show peaks at energ
The superconducting compound, LiFeAs, is studied by scanning tunneling microscopy and spectroscopy. A gap map of the unreconstructed surface indicates a high degree of homogeneity in this system. Spectra at 2 K show two nodeless superconducting gaps
We analyze optical spectroscopy data of the electron-doped superconductor (Pr$_{2-x}$Ce$_x$)CuO$_4$ (PCCO) to investigate the coupling of the charge carriers to bosonic modes. The method of analysis is the inversion of the optical scattering rate $ta
Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high trans
We report specific heat capacity measurements on a LiFeAs single crystal at temperatures down to 400 mK and magnetic fields up to 9 Tesla. A small specific heat jump at Tc and finite residual density of states at T=0 K in the superconducting (SC) sta