ﻻ يوجد ملخص باللغة العربية
The detection of AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae. Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected matter. It has been pointed out that combining inclination constraints derived from the kilonova with gravitational-wave measurements increases the accuracy with which binary parameters can be measured and allows a more accurate inference of the Hubble Constant. In order to not introduce biases, constraints on the inclination angle for AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been used in the literature. According to our study, the inclusion of reprocessing of the photons between different ejecta types improves the modeling fits to AT2017gfo and in some cases affects the inferred constraints. Our study motivates the inclusion of large $sim$ 1 mag uncertainties in the kilonova models employed for Bayesian analysis to capture yet unknown systematics, especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for other parameters. We also use this method to impose soft constraints on the ejecta geometry of the kilonova AT2017gfo.
The merger of two neutron stars (NSs) or a neutron star and a black hole (BH) produces a radioactively-powered transient known as a kilonova, first observed accompanying the gravitational wave event GW170817. While kilonovae are frequently modeled in
The 2017 detection of the inspiral and merger of two neutron stars in gravitational waves and gamma rays was accompanied by a quickly-reddening transient. Such a transient was predicted to occur following a rapid neutron capture (r-process) nucleosyn
We have systematically studied the effect of the orbital inclination in the outburst evolution of black hole transients. We have included all the systems observed by the Rossi X-ray timing explorer in which the thermal, accretion disc component becom
We perform a detailed comparison between a recently proposed parameter-free velocity-dependent one-scale model and the standard parametric model for the cosmological evolution of domain wall networks. We find that the latter overestimates the damping
The kilonova associated with GW170817 displayed early blue emission which has been interpreted as a signature of either radioactive decay in low-opacity ejecta, relativistic boosting of radioactive decay in high-velocity ejecta, the cooling of materi