ﻻ يوجد ملخص باللغة العربية
We study the mod $p$-points of the Kisin-Pappas integral models of abelian type Shimura varieties with parahoric level structure. We show that if the group is quasi-split and unramified, then the mod $p$ isogeny classes are of the form predicted by the Langlands-Rapoport conjecture (c.f. Conjecture 9.2 of arXiv:math/0205022). We prove the same results for quasi-split and tamely ramified groups when their Shimura varieties are proper. The main innovation in this work is a global argument that allows us to reduce the conjecture to the case of a very special parahoric, which is handled in the appendix. This way we avoid the complicated local problem of understanding connected components of affine Deligne-Lusztig varieties for general parahoric subgroups. Along the way, we give a simple irreducibility criterion for Ekedahl-Oort and Kottwitz-Rapoport strata.
Let $F$ be a totally real field in which a prime number $p>2$ is inert. We continue the study of the (generalized) Goren--Oort strata on quaternionic Shimura varieties over finite extensions of $mathbb F_p$. We prove that, when the dimension of the q
Let $k$ be an algebraically closed field of positive characteristic $p$. We first classify the $D$-truncations mod $p$ of Shimura $F$-crystals over $k$ and then we study stratifications defined by inner isomorphism classes of these $D$-truncations. T
We prove formulas for the p-adic logarithm of quaternionic Darmon points on p-adic tori and modular abelian varieties over Q having purely multiplicative reduction at p. These formulas are amenable to explicit computations and are the first to treat
We determine the behavior of automorphic Green functions along the boundary components of toroidal compactifications of orthogonal Shimura varieties. We use this analysis to define boundary components of special divisors and prove that the generating
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, define