ﻻ يوجد ملخص باللغة العربية
Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths towards post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.
We optically probe and electrically control a single artificial molecule containing a well defined number of electrons. Charge and spin dependent inter-dot quantum couplings are probed optically by adding a single electron-hole pair and detecting the
Spin-flop transition (SFT) consists in a jump-like reversal of antiferromagnetic magnetic moments into a non-collinear state when the magnetic field increases above the critical value. Potentially the SFT can be utilized in many applications of a rap
Artificial spin ice systems have opened experimental windows into a range of model magnetic systems through the control of interactions among nanomagnet moments. This control has previously been enabled by altering the nanomagnet size and the geometr
The nature of magnetization reversal in an isolated cylindrical nanomagnet has been studied employing time-resolved magnetoresistance measurement. We find that the reversal mode is highly stochastic, occurring either by multimode or single-step switc
Artificial spin ices are periodic arrangements of interacting nanomagnets successfully used to investigate emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building bloc