ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Landscape and Multistability of a Climate Model

224   0   0.0 ( 0 )
 نشر من قبل Valerio Lucarini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply two independent data analysis methodologies to locate stable climate states in an intermediate complexity climate model and analyze their interplay. First, drawing from the theory of quasipotentials, and viewing the state space as an energy landscape with valleys and mountain ridges, we infer the relative likelihood of the identified multistable climate states, and investigate the most likely transition trajectories as well as the expected transition times between them. Second, harnessing techniques from data science, specifically manifold learning, we characterize the data landscape of the simulation output to find climate states and basin boundaries within a fully agnostic and unsupervised framework. Both approaches show remarkable agreement, and reveal, apart from the well known warm and snowball earth states, a third intermediate stable state in one of the two climate models we consider. The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production via the hydrological cycle drastically change the topography of the dynamical landscape of Earths climate.



قيم البحث

اقرأ أيضاً

Though the Boltzmann-Gibbs framework of equilibrium statistical mechanics has been successful in many arenas, it is clearly inadequate for describing many interesting natural phenomena driven far from equilibrium. The simplest step towards that goal is a better understanding of nonequilibrium steady-states (NESS). Here we focus on one of the distinctive features of NESS, persistent probability currents, and their manifestations in our climate system. We consider the natural variability of the steady-state climate system, which can be approximated as a NESS. These currents must form closed loops, which are odd under time reversal, providing the crucial difference between systems in thermal equilibrium and NESS. Seeking manifestations of such current loops leads us naturally to the notion of probability angular momentum and oscillations in the space of observables. Specifically, we will relate this concept to the asymmetric part of certain time-dependent correlation functions. Applying this approach, we propose that these current loops give rise to preferred spatio-temporal patterns of natural climate variability that take the form of climate oscillations such as the El-Ni~{n}o Southern Oscillation (ENSO) and the Madden-Julien Oscillation (MJO). In the space of climate indices, we observe persistent currents and define a new diagnostic for these currents: the probability angular momentum. Using the observed climatic time series of ENSO and MJO, we compute both the averages and the distributions of the probability angular momentum. These results are in good agreement with the analysis from a linear Gaussian model. We propose that, in addition to being a new quantification of climate oscillations across models and observations, the probability angular momentum provides a meaningful characterization for all statistical systems in NESS.
118 - Valerio Lucarini 2020
We introduce the special issue on the Statistical Mechanics of Climate published on the Journal of Statistical Physics by presenting an informal discussion of some theoretical aspects of climate dynamics that make it a topic of great interest for mat hematicians and theoretical physicists. In particular, we briefly discuss its nonequilibrium and multiscale properties, the relationship between natural climate variability and climate change, the different regimes of climate response to perturbations, and critical transitions.
Extreme events provide relevant insights into the dynamics of climate and their understanding is key for mitigating the impact of climate variability and climate change. By applying large deviation theory to a state-of-the-art Earth system model, we define the climatology of persistent heatwaves and cold spells in key target geographical regions by estimating the rate functions for the surface temperature, and we assess the impact of increasing CO$_2$ concentration on such persistent anomalies. Hence, we can better quantify the increasing hazard {color{black}due} to heatwaves in a warmer climate. We show that two 2010 high impact events - summer Russian heatwave and winter Dzud in Mongolia - are associated with atmospheric patterns that are exceptional compared to the typical ones, but typical compared to the climatology of extremes. Their dynamics is encoded in the natural variability of the climate. Finally, we propose and test an approximate formula for the return times of large and persistent temperature fluctuations from easily accessible statistical properties.
Artificial neural-networks have the potential to emulate cloud processes with higher accuracy than the semi-empirical emulators currently used in climate models. However, neural-network models do not intrinsically conserve energy and mass, which is a n obstacle to using them for long-term climate predictions. Here, we propose two methods to enforce linear conservation laws in neural-network emulators of physical models: Constraining (1) the loss function or (2) the architecture of the network itself. Applied to the emulation of explicitly-resolved cloud processes in a prototype multi-scale climate model, we show that architecture constraints can enforce conservation laws to satisfactory numerical precision, while all constraints help the neural-network better generalize to conditions outside of its training set, such as global warming.
The classical approach for studying atmospheric variability is based on defining a background state and studying the linear stability of the small fluctuations around such a state. Weakly non-linear theories can be constructed using higher order expa nsions terms. While these methods have undoubtedly great value for elucidating the relevant physical processes, they are unable to follow the dynamics of a turbulent atmosphere. We provide a first example of extension of the classical stability analysis to a non-linearly evolving quasi-geostrophic flow. The so-called covariant Lyapunov vectors (CLVs) provide a covariant basis describing the directions of exponential expansion and decay of perturbations to the non-linear trajectory of the flow. We use such a formalism to re-examine the basic barotropic and baroclinic processes of the atmosphere with a quasi-geostrophic beta-plane two-layer model in a periodic channel driven by a forced meridional temperature gradient $Delta T$. We explore three settings of $Delta T$, representative of relatively weak turbulence, well-developed turbulence, and intermediate conditions. We construct the Lorenz energy cycle for each CLV describing the energy exchanges with the background state. A positive baroclinic conversion rate is a necessary but not sufficient condition of instability. Barotropic instability is present only for few very unstable CLVs for large values of $Delta T$. Slowly growing and decaying hydrodynamic Lyapunov modes closely mirror the properties of the background flow. Following classical necessary conditions for barotropic/baroclinic instability, we find a clear relationship between the properties of the eddy fluxes of a CLV and its instability. CLVs with positive baroclinic conversion seem to form a set of modes for constructing a reduced model of the atmosphere dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا