ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of high temperature superconductivity in hydrides under pressure

131   0   0.0 ( 0 )
 نشر من قبل Frank Marsiglio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The long-sought goal of room-temperature superconductivity has reportedly recently been realized in a carbonaceous sulfur hydride compound under high pressure, as reported by Snider et al. [1]. The evidence presented in that paper is stronger than in other similar recent reports of high temperature superconductivity in hydrides under high pressure [2-7], and has been received with universal acclaim [8-10]. Here we point out that features of the experimental data shown in Ref. [1] indicate that the phenomenon observed in that material is not superconductivity. This observation calls into question earlier similar claims of high temperature conventional superconductivity in hydrides under high pressure based on similar or weaker evidence [2-7].



قيم البحث

اقرأ أيضاً

Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record su perconducting critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa of pressure[1], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we re-investigate the phase diagram and the superconducting properties of the H-S system by means of minima hopping method for structure prediction and Density Functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict SeH3 to exceed 120 K superconductivity at 100 GPa. We show that both SeH3 and SH3, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties.
The discovery of high-temperature conventional superconductivity in H3S with a critical temperature of Tc=203 K was followed by the recent record of Tc ~250 K in the face-centered cubic (fcc) lanthanum hydride LaH10 compound. It was realized in a new class of hydrogen-dominated compounds having a clathrate-like crystal structure in which hydrogen atoms form a 3D framework and surround a host atom of rare earth elements. Yttrium hydrides are predicted to have even higher Tc exceeding room temperature. In this paper, we synthesized and refined the crystal structure of new hydrides: YH4, YH6, and YH9 at pressures up to 237 GPa finding that YH4 crystalizes in the I4/mmm lattice, YH6 in Im-3m lattice and YH9 in P63/mmc lattice in excellent agreement with the calculations. The observed very high-temperature superconductivity is comparable to that found in fcc-LaH10: the pressure dependence of Tc for YH9 also displays a dome like shape with the highest Tc of 243 K at 201 GPa. We also observed a Tc of 227 K at 237 GPa for the YH6 phase. However, the measured Tcs are notably lower by ~30 K than predicted. Evidence for superconductivity includes the observation of zero electrical resistance, a decrease of Tc under an external magnetic field and an isotope effect. The theoretically predicted fcc YH10 with the promising highest Tc>300 K was not stabilized in our experiments under pressures up to 237 GPa.
With the motivation of discovering high-temperature superconductors, evolutionary algorithm is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH$_4$, new hydrides SnH$_8$, SnH$_{12}$ and SnH$_{14}$ are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin-hydrides are systematically investigated. I$bar{4}$m2-SnH$_8$, C2/m-SnH$_{12}$ and C2/m-SnH$_{14}$ exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH$_4$ with T$_c$ of 52 K at 200 GPa. An interesting bent H$_3^-$ in I$bar{4}$m2-SnH$_8$ and novel liner H$_4^-$ in C2/m-SnH$_{12}$ are observed. All the new tin-hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H$_2$ and H$_3$.
138 - H. Okada , K. Igawa , H. Takahashi 2008
Electrical resistivity measurements under high pressures up to 29 GPa were performed for oxypnictide compound LaFeAsO. We found a pressure-induced superconductivity in LaFeAsO. The maximum value of Tc is 21 K at ~12 GPa. The pressure dependence of th e Tc is similar to those of LaFeAsO1-xFx series reported previously.
In this work, we show that the same theoretical tools that successfully explain other hydrides systems under pressure seem to be at odds with the recently claimed conventional room temperature superconductivity of the carbonaceous sulfur hydride. We support our conclusions with I) the absence of a dominant low-enthalpy stoichiometry and crystal structure in the ternary phase diagram. II) Only the thermodynamics of C-doping phases appears to be marginally competing in enthalpy against H$_3$S. III) Accurate results of the transition temperature given by ab initio Migdal-Eliashberg calculations differ by more than 110 K to recently theoretical claims explaining the high-temperature superconductivity in carbonaceous-hydrogen sulfide. A novel mechanism of superconductivity or a breakdown of current theories in this system is possibly behind the disagreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا