ﻻ يوجد ملخص باللغة العربية
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A graph $G$ is strongly fractional $r$-choosable if $G$ is $(a,b)$-choosable for all positive integers $a,b$ for which $a/b ge r$. The strong fractional choice number of $G$ is $ch_f^s(G) = inf {r: G $ is strongly fractional $r$-choosable$}$. This paper determines the strong fractional choice number of all $3$-choice critical graphs.
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A characterization of $3$-choice critical graphs was given by Voigt in [On list Colourings and Choosability of Graphs, Habilitationsschrif
In this short note, we show that for any $epsilon >0$ and $k<n^{0.5-epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $Theta (nlog n)$.
This is a survey paper on rainbow sets (another name for ``choice functions). The main theme is the distinction between two types of choice functions: those having a large (in the sense of belonging to some specified filter, namely closed up set of s
A social choice correspondence satisfies balancedness if, for every pair of alternatives, x and y, and every pair of individuals, i and j, whenever a profile has x adjacent to but just above y for individual i while individual j has y adjacent to but
We prove a common generalization of two results, one on rainbow fractional matchings and one on rainbow sets in the intersection of two matroids: Given $d = r lceil k rceil - r + 1$ functions of size (=sum of values) $k$ that are all independent in e