ﻻ يوجد ملخص باللغة العربية
Quantum engineering using photonic structures offer new capabilities for atom-photon interactions for quantum optics and atomic physics, which could eventually lead to integrated quantum devices. Despite the rapid progress in the variety of structures, coherent excitation of the motional states of atoms in a photonic waveguide using guided modes has yet to be demonstrated. Here, we use the waveguide mode of a hollow-core photonic crystal fibre to manipulate the mechanical Fock states of single atoms in a harmonic potential inside the fibre. We create a large array of Schrodinger cat states, a quintessential feature of quantum physics and a key element in quantum information processing and metrology, of approximately 15000 atoms along the fibre by entangling the electronic state with the coherent harmonic oscillator state of each individual atom. Our results provide a useful step for quantum information and simulation with a wide range of photonic waveguide systems.
Mesoscopic quantum superpositions, or Schrodinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition
Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schrodinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacemen