ﻻ يوجد ملخص باللغة العربية
A number of recent experiments indicate that the iron-chalcogenide FeSe provides the long-sought possibility to study bulk superconductivity in the cross-over regime between the weakly coupled Bardeen--Cooper--Schrieffer (BCS) pairing and the strongly coupled Bose--Einstein condensation (BEC). We report on $^{77}$Se nuclear magnetic resonance experiments of FeSe, focused on the superconducting phase for strong magnetic fields applied along the $c$ axis, where a distinct state with large spin polarization was reported. We determine this high-field state as bulk superconducting with high spatial homogeneity of the low-energy spin fluctuations. Further, we find that the static spin susceptibility becomes unusually small at temperatures approaching the superconducting state, despite the presence of pronounced spin fluctuations. Taken together, our results clearly indicate that FeSe indeed features an unusual field-induced superconducting state of a highly spin-polarized Fermi liquid in the BCS-BEC crossover regime.
We conducted $^{77}$Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the
The 12%-S doped FeSe system has a high Tc of 30 K at a pressure of 3.0 GPa. We have successfully investigated its microscopic properties for the first time via $^{77}$Se-NMR measurements under pressure. The antiferromagnetic (AFM) fluctuations at the
The recent study of $^{77}$Se nuclear magnetic resonance (NMR) in a $beta$-FeSe single crystal proposed that ferro-orbital order breaks the $90^circ$ $C_4$ rotational symmetry, driving nematic ordering. Here, we report an NMR study of the impact of s
We report $^{57}$Fe-NMR studies on the oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO$_{0.7}$ ($T_{c}=$ 28 K) enriched by $^{57}$Fe isotope. In the superconducting state, the spin component of $^{57}$Fe-Knight shift $^{57}K$ decr
The layered quasi-one-dimensional molecular superconductor (TMTSF)$_2$PF$_6$ is a very exotic material with a superconducting order parameter whose ground state symmetry has remained ill-defined. Here we present a pulsed NMR Knight shift (K) study of