ﻻ يوجد ملخص باللغة العربية
In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moir{e} patterns. We show that moir{e} superlattice effects persist in twisted bilayer graphene with large twists and short moir{e} periods. Using angle-resolved photoemission, we observe changes in valence band topology across large parts of the Brillouin zone, including vicinity of the saddle point at M and across over 3 eV from the Dirac points. We also detect signatures of potential secondary Dirac points in the reconstructed dispersions. For twists $theta>21.8^{circ}$, scattering of electrons in one graphene layer on the potential of the other leads to intervalley coupling and minigaps at energies above the gap due to cone anti-crossing, usually considered the only low-energy feature due to interlayer coupling. Our work demonstrates robustness of mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles.
Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subt
We report on the energy spectrum of electrons in twisted bilayer graphene (tBLG) obtained by the band-unfolding method in the tight-binding model. We find the band-gap opening at particular points in the reciprocal space, that elucidates the drastic
Twisted bilayer graphene (TwBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moir{e} physics and interlayer hybridization effects. We report on electronic transport
In this paper, the electronic properties of 30{deg} twisted double bilayer graphene, which loses the translational symmetry due to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the interlayer
Layers of twisted bilayer graphene exhibit varieties of exotic quantum phenomena1-5. Today, the twist angle {Theta} has become an important degree of freedom for exploring novel states of matters, i.e. two-dimensional superconductivity ( {Theta} = 1.