ﻻ يوجد ملخص باللغة العربية
For a directed graph $G(V_n, E_n)$ on the vertices $V_n = {1,2, dots, n}$, we study the distribution of a Markov chain ${ {bf R}^{(k)}: k geq 0}$ on $mathbb{R}^n$ such that the $i$th component of ${bf R}^{(k)}$, denoted $R_i^{(k)}$, corresponds to the value of the process on vertex $i$ at time $k$. We focus on processes ${ {bf R}^{(k)}: k geq 0}$ where the value of $R_i^{(k+1)}$ depends only on the values ${ R_j^{(k)}: j to i}$ of its inbound neighbors, and possibly on vertex attributes. We then show that, provided $G(V_n, E_n)$ converges in the local weak sense to a marked Galton-Watson process, the dynamics of the process for a uniformly chosen vertex in $V_n$ can be coupled, for any fixed $k$, to a process ${ mathcal{R}_emptyset^{(r)}: 0 leq r leq k}$ constructed on the limiting marked Galton-Watson tree. Moreover, we derive sufficient conditions under which $mathcal{R}^{(k)}_emptyset$ converges, as $k to infty$, to a random variable $mathcal{R}^*$ that can be characterized in terms of the attracting endogenous solution to a branching distributional fixed-point equation. Our framework can also be applied to processes ${ {bf R}^{(k)}: k geq 0}$ whose only source of randomness comes from the realization of the graph $G(V_n, E_n)$.
The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba cite{fengFouqueIchiba2020linearquadratic}. In that work, the game on a directed chain with finite or infinite players was defined
We study the directed polymer model for general graphs (beyond $mathbb Z^d$) and random walks. We provide sufficient conditions for the existence or non-existence of a weak disorder phase, of an $L^2$ region, and of very strong disorder, in terms of
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet, and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighb
We study linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque, and Ichiba. We solve explicitly for Nash equilibria with a finite number of pl