ﻻ يوجد ملخص باللغة العربية
Targeting dependable communications for industrial Internet of Things applications, IETF 6TiSCH provides mechanisms for efficient scheduling, routing, and forwarding of IPv6 traffic across low-power mesh networks. Yet, despite an overwhelming body of literature covering both centralized and distributed scheduling schemes for 6TiSCH, an effective control solution for large-scale multi-hop mesh networks remains an open challenge. This paper addresses this with a novel approach that eliminates much of the routing and link-layer overhead incurred by centralized schedulers, and provides a robust mechanism for data dissemination synchronization within 6TiSCH. Specifically, we leverage the physical layer (PHY) switching capabilities of modern low-power wireless platforms to build on recent work demonstrating the viability of Concurrent Transmission (CT)-based flooding protocols across the Bluetooth 5 (BT 5) PHYs. By switching the PHY and MAC layer at runtime, we inject a BT 5-based CT flood within a standard IEEE 802.15.4 TSCH slotframe, thereby providing a reliable, low-latency scheme for 6TiSCH control messaging. We present an analytical model and experimental evaluation showing how our solution not only exploits the BT 5 high data-rate PHY layers for rapid data dissemination, but can also provide reliable 6TiSCH association and synchronization even under external radio interference. We further discuss how the proposed technique can be used to address other open challenges within the standard.
Six years after the adoption of the standard 4.0, the Bluetooth Special Interest Group (SIG), a non-profit association that deals with the study and the development of technology standards including those of Bluetooth, has officially released the mai
The popularity of concurrent transmissions (CT) has soared after recent studies have shown their feasibility on the four physical layers specified by BLE 5, hence providing an alternative to the use of IEEE 802.15.4 for the design of reliable and eff
The IETF 6TiSCH working group fosters the adaptation of IPv6-based protocols into Internet of Things by introducing the 6TiSCH Operation Sublayer (6top). The 6TiSCH architecture integrates the high reliability and low-energy consumption of IEEE 802.1
We consider the problem of efficient packet dissemination in wireless networks with point-to-multi-point wireless broadcast channels. We propose a dynamic policy, which achieves the broadcast capacity of the network. This policy is obtained by first
A novel and compact tri-band planar antenna for 2.4/5.2/5.8-GHz wireless local area network (WLAN), 2.3/3.5/5.5GHz Worldwide Interoperability for Microwave Access (WiMAX) and Bluetooth applications is proposed and studied in this paper. The antenna c