ﻻ يوجد ملخص باللغة العربية
The standard Large Deviation Theory (LDT) represents the mathematical counterpart of the Boltzmann-Gibbs factor which describes the thermal equilibrium of short-range Hamiltonian systems, the velocity distribution of which is Maxwellian. It is generically applicable to systems satisfying the Central Limit Theorem (CLT). When we focus instead on stationary states of typical complex systems (e.g., classical long-range Hamiltonian systems), both the CLT and LDT need to be generalized. Specifically, when the N->infinity attractor in the space of distributions is a Q-Gaussian related to a Q-generalized CLT (Q=1 recovers Gaussian attractors), we expect the LDT probability distribution to approach a q-exponential (where q=f(Q) with f(1)=1, thus recovering the standard LDT exponential distribution) with an argument proportional to N, consistently with thermodynamics. We numerically verify this conjectural scenario for the standard map, the coherent noise model for biological extinctions and earthquakes, the Ehrenfest dog-flea model, and the random-walk avalanches.
The theory of large deviations constitutes a mathematical cornerstone in the foundations of Boltzmann-Gibbs statistical mechanics, based on the additive entropy $S_{BG}=- k_Bsum_{i=1}^W p_i ln p_i$. Its optimization under appropriate constraints yiel
The paper that is commented by Touchette contains a computational study which opens the door to a desirable generalization of the standard large deviation theory (applicable to a set of $N$ nearly independent random variables) to systems belonging to
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar a
Large deviation functions are an essential tool in the statistics of rare events. Often they can be obtained by contraction from a so-called level 2 large deviation {em functional} characterizing the empirical density of the underlying stochastic pro
We analyse dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a {em quantum level-2.5 large deviation principle} for these systems, which describes the joint fluctuations of time-a