ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary Activations for Uncertainty Calibration in Deep Learning

54   0   0.0 ( 0 )
 نشر من قبل Lassi Meronen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new family of non-linear neural network activation functions that mimic the properties induced by the widely-used Matern family of kernels in Gaussian process (GP) models. This class spans a range of locally stationary models of various degrees of mean-square differentiability. We show an explicit link to the corresponding GP models in the case that the network consists of one infinitely wide hidden layer. In the limit of infinite smoothness the Matern family results in the RBF kernel, and in this case we recover RBF activations. Matern activation functions result in similar appealing properties to their counterparts in GP models, and we demonstrate that the local stationarity property together with limited mean-square differentiability shows both good performance and uncertainty calibration in Bayesian deep learning tasks. In particular, local stationarity helps calibrate out-of-distribution (OOD) uncertainty. We demonstrate these properties on classification and regression benchmarks and a radar emitter classification task.



قيم البحث

اقرأ أيضاً

High-quality estimates of uncertainty and robustness are crucial for numerous real-world applications, especially for deep learning which underlies many deployed ML systems. The ability to compare techniques for improving these estimates is therefore very important for research and practice alike. Yet, competitive comparisons of methods are often lacking due to a range of reasons, including: compute availability for extensive tuning, incorporation of sufficiently many baselines, and concrete documentation for reproducibility. In this paper we introduce Uncertainty Baselines: high-quality implementations of standard and state-of-the-art deep learning methods on a variety of tasks. As of this writing, the collection spans 19 methods across 9 tasks, each with at least 5 metrics. Each baseline is a self-contained experiment pipeline with easily reusable and extendable components. Our goal is to provide immediate starting points for experimentation with new methods or applications. Additionally we provide model checkpoints, experiment outputs as Python notebooks, and leaderboards for comparing results. Code available at https://github.com/google/uncertainty-baselines.
The distribution of a neural networks latent representations has been successfully used to detect out-of-distribution (OOD) data. This work investigates whether this distribution moreover correlates with a models epistemic uncertainty, thus indicates its ability to generalise to novel inputs. We first empirically verify that epistemic uncertainty can be identified with the surprise, thus the negative log-likelihood, of observing a particular latent representation. Moreover, we demonstrate that the output-conditional distribution of hidden representations also allows quantifying aleatoric uncertainty via the entropy of the predictive distribution. We analyse epistemic and aleatoric uncertainty inferred from the representations of different layers and conclude that deeper layers lead to uncertainty with similar behaviour as established - but computationally more expensive - methods (e.g. deep ensembles). While our approach does not require modifying the training process, we follow prior work and experiment with an additional regularising loss that increases the information in the latent representations. We find that this leads to improved OOD detection of epistemic uncertainty at the cost of ambiguous calibration close to the data distribution. We verify our findings on both classification and regression models.
For distributed machine learning with sensitive data, we demonstrate how minimizing distance correlation between raw data and intermediary representations reduces leakage of sensitive raw data patterns across client communications while maintaining m odel accuracy. Leakage (measured using distance correlation between input and intermediate representations) is the risk associated with the invertibility of raw data from intermediary representations. This can prevent client entities that hold sensitive data from using distributed deep learning services. We demonstrate that our method is resilient to such reconstruction attacks and is based on reduction of distance correlation between raw data and learned representations during training and inference with image datasets. We prevent such reconstruction of raw data while maintaining information required to sustain good classification accuracies.
Deep learning has achieved impressive performance on many tasks in recent years. However, it has been found that it is still not enough for deep neural networks to provide only point estimates. For high-risk tasks, we need to assess the reliability o f the model predictions. This requires us to quantify the uncertainty of model prediction and construct prediction intervals. In this paper, We explore the uncertainty in deep learning to construct the prediction intervals. In general, We comprehensively consider two categories of uncertainties: aleatory uncertainty and epistemic uncertainty. We design a special loss function, which enables us to learn uncertainty without uncertainty label. We only need to supervise the learning of regression task. We learn the aleatory uncertainty implicitly from the loss function. And that epistemic uncertainty is accounted for in ensembled form. Our method correlates the construction of prediction intervals with the uncertainty estimation. Impressive results on some publicly available datasets show that the performance of our method is competitive with other state-of-the-art methods.
Reinforcement learning agents are faced with two types of uncertainty. Epistemic uncertainty stems from limited data and is useful for exploration, whereas aleatoric uncertainty arises from stochastic environments and must be accounted for in risk-se nsitive applications. We highlight the challenges involved in simultaneously estimating both of them, and propose a framework for disentangling and estimating these uncertainties on learned Q-values. We derive unbiased estimators of these uncertainties and introduce an uncertainty-aware DQN algorithm, which we show exhibits safe learning behavior and outperforms other DQN variants on the MinAtar testbed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا