ﻻ يوجد ملخص باللغة العربية
We prove PSPACE-completeness of two classic types of Chess problems when generalized to n-by-n boards. A retrograde problem asks whether it is possible for a position to be reached from a natural starting position, i.e., whether the position is valid or legal or reachable. Most real-world retrograde Chess problems ask for the last few moves of such a sequence; we analyze the decision question which gets at the existence of an exponentially long move sequence. A helpmate problem asks whether it is possible for a player to become checkmated by any sequence of moves from a given position. A helpmate problem is essentially a cooperative form of Chess, where both players work together to cause a particular player to win; it also arises in regular Chess games, where a player who runs out of time (flags) loses only if they could ever possibly be checkmated from the current position (i.e., the helpmate problem has a solution). Our PSPACE-hardness reductions are from a variant of a puzzle game called Subway Shuffle.
We analyze the structure of the state space of chess by means of transition path sampling Monte Carlo simulation. Based on the typical number of moves required to transpose a given configuration of chess pieces into another, we conclude that the stat
In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., description, comparison, planning, etc.). We introduce a neural chess engine into text ge
We prove that the classic falling-block video game Tetris (both survival and board clearing) remains NP-complete even when restricted to 8 columns, or to 4 rows, settling open problems posed over 15 years ago [BDH+04]. Our reduction is from 3-Partiti
The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all
A door gadget has two states and three tunnels that can be traversed by an agent (player, robot, etc.): the open and close tunnel sets the gadgets state to open and closed, respectively, while the traverse tunnel can be traversed if and only if the d