ﻻ يوجد ملخص باللغة العربية
In this paper, we look at four generalizations of the one dimensional Aubry-Andre-Harper (AAH) model which possess mobility edges. We map out a phase diagram in terms of population imbalance, and look at the system size dependence of the steady state imbalance. We find non-monotonic behaviour of imbalance with system parameters, which contradicts the idea that the relaxation of an initial imbalance is fixed only by the ratio of number of extended states to number of localized states. We propose that there exists dimensionless parameters, which depend on the fraction of single particle localized states, single particle extended states and the mean participation ratio of these states. These ingredients fully control the imbalance in the long time limit and we present numerical evidence of this claim. Among the four models considered, three of them have interesting duality relations and their location of mobility edges are known. One of the models (next nearest neighbour coupling) has no known duality but mobility edge exists and the model has been experimentally realized. Our findings are an important step forward to understanding non-equilibrium phenomena in a family of interesting models with incommensurate potentials.
We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high
We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate the density propagation, long-time survival prob
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a diffe
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it i
The Anderson localization transition is one of the most well studied examples of a zero temperature quantum phase transition. On the other hand, many open questions remain about the phenomenology of disordered systems driven far out of equilibrium. H