By means of density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations and resonant inelastic x-ray scattering (RIXS) experiments, we investigate the high-pressure phases of the spin-orbit-coupled $J_{rm{eff}}=3/2$ insulator GaTa$_4$Se$_8$. Its metallic phase, derived from the Mott state by applying pressure, is found to carry $J_{rm{eff}}=3/2$ moments. The characteristic excitation peak in the RIXS spectrum maintains its destructive quantum interference of $J_{rm{eff}}$ at the Ta $L_2$-edge up to 10.4 GPa. Our exact diagonalization based DFT+DMFT calculations including spin-orbit coupling also reveal that the $J_{rm{eff}}=3/2$ character can be clearly identified under high pressure. These results establish the intriguing nature of the correlated metallic magnetic phase, which represents the first confirmed example of $J_{rm{eff}}$=3/2 moments residing in a metal. They also indicate that the pressure-induced superconductivity is likely unconventional and influenced by these $J_{rm{eff}}=3/2$ moments. Based on a self-energy analysis, we furthermore propose the possibility of doping-induced superconductivity related to a spin-freezing crossover.