ﻻ يوجد ملخص باللغة العربية
The $k$-essence theory is a prototypical class of scalar-field models that already gives rich phenomenology and has been a target of extensive studies in cosmology. General forms of shift-symmetric $k$-essence are known to suffer from formation of caustics in a planar-symmetric configuration, with the only exceptions of canonical and DBI-/cuscuton-type kinetic terms. With this in mind, we seek for multi-field caustic-free completions of a general class of shift-symmetric $k$-essence models in this paper. The field space in UV theories is naturally curved, and we introduce the scale of the curvature as the parameter that controls the mass of the heavy field(s) that would be integrated out in the process of EFT reduction. By numerical methods, we demonstrate that the introduction of a heavy field indeed resolves the caustic problem by invoking its motion near the would-be caustic formation. We further study the cosmological application of the model. By expanding the equations with respect to the curvature scale of the field space, we prove that the EFT reduction is successfully done by taking the limit of infinite curvature, both for the background and perturbation, with gravity included. The next leading-order computation is consistently conducted and shows that the EFT reduction breaks down in the limit of vanishing sound speed of the perturbation.
We study a free scalar field $phi$ in a fixed curved background spacetime subject to a higher derivative field equation of the form $F(Box)phi =0$, where $F$ is a polynomial of the form $F(Box)= prod_i (Box-m_i^2)$ and all masses $m_i$ are distinct a
The simplicity of the CMB data, so well described by single-field inflation, raises the question whether there might be an equally simple multi-field realization consistent with the observations. We explore the idea that an approximate angular shift
In this work, we study the impact of quantum entanglement on the two-point correlation function and the associated primordial power spectrum of mean square vacuum fluctuation in a bipartite quantum field theoretic system. The field theory that we con
We study a model of two scalar fields with a hyperbolic field space and show that it reduces to a single-field Dirac-Born-Infeld (DBI) model in the limit where the field space becomes infinitely curved. We apply the de Sitter swampland conjecture to
In the first part of this paper we critically examine the ultra-violet implications of theories that exhibit Vainshtein screening, taking into account both the standard Wilsonian perspective as well as more exotic possibilities. Aspects of this discu