ﻻ يوجد ملخص باللغة العربية
In-plane magnetoresistance for organic massless Dirac electron system (OMDES) $alpha$-(BEDT-TTF)$_2$I$_3$ and $theta$-(BEDT-TTF)$_2$I$_3$ in addition to possible candidates of the OMDES $alpha$-(BETS)$_2$I$_3$ and $alpha$-(BEDT-STF)$_2$I$_3$, was investigated under hydrostatic pressure. We have found the universal behavior of the in-plane magnetoresistance under a low magnetic field perpendicular to two-dimensional plane. As for $alpha$-(BEDT-TTF)$_2$I$_3$, the universality was examined with the parameters of temperature, magnetic field and its direction. We suggest that the universal magnetoresistance behavior is found even for the gapped state of $alpha$-(BEDT-TTF)$_2$I$_3$ under intermediate pressure, when the thermal energy exceeds the gap.
Two-dimensional electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO$_3$-based heterostructures, are hampered by the need of growing complex oxide over-layers thicke
A large negative magnetoresistance is anticipated in topological semimetals in the parallel magnetic and electric field configuration as a consequence of the nontrivial topological properties. The negative magnetoresistance is believed to demonstrate
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In
We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds dis
The non-Fermi-liquid (NFL) behavior observed in the low temperature specific heat $C(T)$ and magnetic susceptibility $chi(T)$ of f-electron systems is analyzed within the context of a recently developed theory based on Griffiths singularities. Measur