ﻻ يوجد ملخص باللغة العربية
Magnon-polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here we report an observation of antiferromagnetic (AFM) magnon-polarons in a uniaxial AFM insulator Cr2O3. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ~ 6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon-polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon-polarons at low temperatures.
A magnon Nernst effect, an antiferromagnetic analogue of the magnon Hall effect in ferromagnetic insulators, has been studied experimentally for a layered antiferromagnetic insulator MnPS3 in contact with two Pt strips. Thermoelectric voltage in the
Inducing magnetic orders in a topological insulator (TI) to break its time reversal symmetry has been predicted to reveal many exotic topological quantum phenomena. The manipulation of magnetic orders in a TI layer can play a key role in harnessing t
We report on experiments demonstrating coherent control of magnon spin transport and pseudospin dynamics in a thin film of the antiferromagnetic insulator hematite utilizing two Pt strips for all-electrical magnon injection and detection. The measure
We report the observation of anomalous peak structures induced by hybridized magnon-phonon excitation (magnon polarons) in the magnetic field dependence of the spin Peltier effect (SPE) in a Lu$_{2}$Bi$_{1}$Fe$_{4}$Ga$_{1}$O$_{12}$ (BiGa:LuIG) with P
Sharp structures in magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y$_{3}$Fe$_{5}$O$_{12}$ (YIG) at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory th