ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk

89   0   0.0 ( 0 )
 نشر من قبل Tetsuo Kurosaki
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study portfolio optimization of four major cryptocurrencies. Our time series model is a generalized autoregressive conditional heteroscedasticity (GARCH) model with multivariate normal tempered stable (MNTS) distributed residuals used to capture the non-Gaussian cryptocurrency return dynamics. Based on the time series model, we optimize the portfolio in terms of Foster-Hart risk. Those sophisticated techniques are not yet documented in the context of cryptocurrency. Statistical tests suggest that the MNTS distributed GARCH model fits better with cryptocurrency returns than the competing GARCH-type models. We find that Foster-Hart optimization yields a more profitable portfolio with better risk-return balance than the prevailing approach.



قيم البحث

اقرأ أيضاً

191 - Cheng Peng , Young Shin Kim 2020
We propose a Markov regime switching GARCH model with multivariate normal tempered stable innovation to accommodate fat tails and other stylized facts in returns of financial assets. The model is used to simulate sample paths as input for portfolio o ptimization with risk measures, namely, conditional value at risk and conditional drawdown. The motivation is to have a portfolio that avoids left tail events by combining models that incorporates fat tail with optimization that focuses on tail risk. In-sample test is conducted to demonstrate goodness of fit. Out-of-sample test shows that our approach yields higher performance measured by Sharpe-like ratios than the market and equally weighted portfolio in recent years which includes some of the most volatile periods in history. We also find that suboptimal portfolios with higher return constraints tend to outperform optimal portfolios.
In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Ri sk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.
We study a static portfolio optimization problem with two risk measures: a principle risk measure in the objective function and a secondary risk measure whose value is controlled in the constraints. This problem is of interest when it is necessary to consider the risk preferences of two parties, such as a portfolio manager and a regulator, at the same time. A special case of this problem where the risk measures are assumed to be coherent (positively homogeneous) is studied recently in a joint work of the author. The present paper extends the analysis to a more general setting by assuming that the two risk measures are only quasiconvex. First, we study the case where the principal risk measure is convex. We introduce a dual problem, show that there is zero duality gap between the portfolio optimization problem and the dual problem, and finally identify a condition under which the Lagrange multiplier associated to the dual problem at optimality gives an optimal portfolio. Next, we study the general case without the convexity assumption and show that an approximately optimal solution with prescribed optimality gap can be achieved by using the well-known bisection algorithm combined with a duality result that we prove.
We implement momentum strategies using reward-risk measures as ranking criteria based on classical tempered stable distribution. Performances and risk characteristics for the alternative portfolios are obtained in various asset classes and markets. T he reward-risk momentum strategies with lower volatility levels outperform the traditional momentum strategy regardless of asset class and market. Additionally, the alternative portfolios are not only less riskier in risk measures such as VaR, CVaR and maximum drawdown but also characterized by thinner downside tails. Similar patterns in performance and risk profile are also found at the level of each ranking basket in the reward-risk portfolios. Higher factor-neutral returns achieved by the reward-risk momentum strategies are statistically significant and large portions of the performances are not explained by the Carhart four-factor model.
122 - Young Shin Kim 2020
In this paper, we propose a market model with returns assumed to follow a multivariate normal tempered stable distribution defined by a mixture of the multivariate normal distribution and the tempered stable subordinator. This distribution is able to capture two stylized facts: fat-tails and asymmetry, that have been empirically observed for asset return distributions. On the new market model, we discuss a new portfolio optimization method, which is an extension of Markowitzs mean-variance optimization. The new optimization method considers not only reward and dispersion but also asymmetry. The efficient frontier is also extended to a curved surface on three-dimensional space of reward, dispersion, and asymmetry. We also propose a new performance measure which is an extension of the Sharpe Ratio. Moreover, we derive closed-form solutions for two important measures used by portfolio managers in portfolio construction: the marginal Value-at-Risk (VaR) and the marginal Conditional VaR (CVaR). We illustrate the proposed model using stocks comprising the Dow Jones Industrial Average. First, perform the new portfolio optimization and then demonstrating how the marginal VaR and marginal CVaR can be used for portfolio optimization under the model. Based on the empirical evidence presented in this paper, our framework offers realistic portfolio optimization and tractable methods for portfolio risk management.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا