ﻻ يوجد ملخص باللغة العربية
Optical focusing through/inside scattering media, like multimode fiber and biological tissues, has significant impact in biomedicine yet considered challenging due to strong scattering nature of light. Previously, promising progress has been made, benefiting from the iterative optical wavefront shaping, with which deep-tissue high-resolution optical focusing becomes possible. Most of iterative algorithms can overcome noise perturbations but fail to effectively adapt beyond the noise, e.g. sudden strong perturbations. Re-optimizations are usually needed for significant decorrelated medium since these algorithms heavily rely on the optimization in the previous iterations. Such ineffectiveness is probably due to the absence of a metric that can gauge the deviation of the instant wavefront from the optimum compensation based on the concurrently measured optical focusing. In this study, a square rule of binary-amplitude modulation, directly relating the measured focusing performance with the error in the optimized wavefront, is theoretically proved and experimentally validated. With this simple rule, it is feasible to quantify how many pixels on the spatial light modulator incorrectly modulate the wavefront for the instant status of the medium or the whole system. As an example of application, we propose a novel algorithm, dynamic mutation algorithm, with high adaptability against perturbations by probing how far the optimization has gone toward the theoretically optimum. The diminished focus of scattered light can be effectively recovered when perturbations to the medium cause significant drop of the focusing performance, which no existing algorithms can achieve due to their inherent strong dependence on previous optimizations. With further improvement, this study may boost or inspire many applications, like high-resolution imaging and stimulation, in instable scattering environments.
Imaging through scattering media is a useful and yet demanding task since it involves solving for an inverse mapping from speckle images to object images. It becomes even more challenging when the scattering medium undergoes dynamic changes. Various
Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to addre
We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number o
Focusing light into opaque random or scattering media such as biological tissue is a much sought-after goal for biomedical applications such as photodynamic therapy, optical manipulation, and photostimulation. However, focusing with conventional lens
Full-field imaging through scattering media is fraught with many challenges. Despite many achievements in recent years, current imaging methods are too slow to deal with fast dynamics that occur for example in biomedical imaging. Here we present an u