ترغب بنشر مسار تعليمي؟ اضغط هنا

A complex networks approach to ranking professional Snooker players

213   0   0.0 ( 0 )
 نشر من قبل Joseph D. O'Brien
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A detailed analysis of matches played in the sport of Snooker during the period 1968-2020 is used to calculate a directed and weighted dominance network based upon the corresponding results. We consider a ranking procedure based upon the well-studied PageRank algorithm that incorporates details of not only the number of wins a player has had over their career but also the quality of opponent faced in these wins. Through this study we find that John Higgins is the highest performing Snooker player of all time with Ronnie OSullivan appearing in second place. We demonstrate how this approach can be applied across a variety of temporal periods in each of which we may identify the strongest player in the corresponding era. This procedure is then compared with more classical ranking schemes. Furthermore, a visualization tool known as the rank-clock is introduced to the sport which allows for immediate analysis of the career trajectory of individual competitors. These results further demonstrate the use of network science in the quantification of success within the field of sport.



قيم البحث

اقرأ أيضاً

Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node and the node set with the highest $k$-core value, we present an improved method to generate the ranking list to evaluate the node spreading influence. Comparing with the epidemic process results for four real networks and the Barab{a}si-Albert network, the parameterless method could identify the node spreading influence more accurately than the ones generated by the degree $k$, closeness centrality, $k$-shell and mixed degree decomposition methods. This work would be helpful for deeply understanding the node importance of a network.
Symmetries are fundamental to dynamical processes in complex networks such as cluster synchronization, which have attracted a great deal of current research. Finding symmetric nodes in large complex networks, however, has relied on automorphism group s in algebraic group theory, which are solvable in quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each and every node in the network. We prove mathematically that nodes with the identical SPV are symmetrical to each other. Utilizing six representative complex networks from the real world, we demonstrate that all symmetric nodes can be found in linear time, and the SPVs can not only characterize the similarity of nodes but also quantify the nodal influences in spreading dynamics on the network. Our SPV-based framework, in additional to being rigorously justified, provides a physically intuitive way to uncover, understand and exploit symmetric structures in complex networks.
We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or direction of edges. The ranking is obtained by solving a linear system of equations, which is sparse if the network is; thus the resulting algorithm is extremely efficient and scalable. We illustrate these findings by analyzing real and synthetic data, including datasets from animal behavior, faculty hiring, social support networks, and sports tournaments. We show that our method often outperforms a variety of others, in both speed and accuracy, in recovering the underlying ranks and predicting edge directions.
Real systems are usually composed by units or nodes whose activity can be interrupted and restored intermittently due to complex interactions not only with the environment, but also with the same system. Majdandv{z}ic $et;al.$ [Nature Physics 10, 34 (2014)] proposed a model to study systems in which active nodes fail and recover spontaneously in a complex network and found that in the steady state the density of active nodes can exhibit an abrupt transition and hysteresis depending on the values of the parameters. Here we investigate a model of recovery-failure from a dynamical point of view. Using an effective degree approach we find that the systems can exhibit a temporal sharp decrease in the fraction of active nodes. Moreover we show that, depending on the values of the parameters, the fraction of active nodes has an oscillatory regime which we explain as a competition between different failure processes. We also find that in the non-oscillatory regime, the critical fraction of active nodes presents a discontinuous drop which can be related to a targeted k-core percolation process. Finally, using mean field equations we analyze the space of parameters at which hysteresis and oscillatory regimes can be found.
99 - Pengli Lu , Chen Dong 2020
The safety and robustness of the network have attracted the attention of people from all walks of life, and the damage of several key nodes will lead to extremely serious consequences. In this paper, we proposed the clustering H-index mixing (CHM) ce ntrality based on the H- index of the node itself and the relative distance of its neighbors. Starting from the node itself and combining with the topology around the node, the importance of the node and its spreading capability were determined. In order to evaluate the performance of the proposed method, we use Susceptible-Infected-Recovered (SIR) model, monotonicity and resolution as the evaluation standard of experiment. Experimental results in artificial networks and real-world networks show that CHM centrality has excellent performance in identifying node importance and its spreading capability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا