ﻻ يوجد ملخص باللغة العربية
Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks. Code shall be released.
Most existing point cloud instance and semantic segmentation methods rely heavily on strong supervision signals, which require point-level labels for every point in the scene. However, such strong supervision suffers from large annotation costs, arou
This paper proposes a novel active boundary loss for semantic segmentation. It can progressively encourage the alignment between predicted boundaries and ground-truth boundaries during end-to-end training, which is not explicitly enforced in commonly
Camera and 3D LiDAR sensors have become indispensable devices in modern autonomous driving vehicles, where the camera provides the fine-grained texture, color information in 2D space and LiDAR captures more precise and farther-away distance measureme
Birds-eye-view (BEV) is a powerful and widely adopted representation for road scenes that captures surrounding objects and their spatial locations, along with overall context in the scene. In this work, we focus on birds eye semantic segmentation, a
We present FasterSeg, an automatically designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods. Utilizing neural architecture search (NAS), FasterSeg is discovered from a novel and