ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting Deep Learning Model Using Rule-based Method

89   0   0.0 ( 0 )
 نشر من قبل Xiaojian Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning models are favored in many research and industry areas and have reached the accuracy of approximating or even surpassing human level. However theyve long been considered by researchers as black-box models for their complicated nonlinear property. In this paper, we propose a multi-level decision framework to provide comprehensive interpretation for the deep neural network model. In this multi-level decision framework, by fitting decision trees for each neuron and aggregate them together, a multi-level decision structure (MLD) is constructed at first, which can approximate the performance of the target neural network model with high efficiency and high fidelity. In terms of local explanation for sample, two algorithms are proposed based on MLD structure: forward decision generation algorithm for providing sample decisions, and backward rule induction algorithm for extracting sample rule-mapping recursively. For global explanation, frequency-based and out-of-bag based methods are proposed to extract important features in the neural network decision. Furthermore, experiments on the MNIST and National Free Pre-Pregnancy Check-up (NFPC) dataset are carried out to demonstrate the effectiveness and interpretability of MLD framework. In the evaluation process, both functionally-grounded and human-grounded methods are used to ensure credibility.



قيم البحث

اقرأ أيضاً

Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behavi ors of visual environments in imagination by leveraging an internal World Model of the environment. Improved sample efficiency can also be achieved by reusing knowledge from previously learned tasks, but transfer learning is still a challenging topic in RL. Parameter-based transfer learning is generally done using an all-or-nothing approach, where the networks parameters are either fully transferred or randomly initialized. In this work we present a simple alternative approach: fractional transfer learning. The idea is to transfer fractions of knowledge, opposed to discarding potentially useful knowledge as is commonly done with random initialization. Using the World Model-based Dreamer algorithm, we identify which type of components this approach is applicable to, and perform experiments in a new multi-source transfer learning setting. The results show that fractional transfer learning often leads to substantially improved performance and faster learning compared to learning from scratch and random initialization.
Arguably the key reason for the success of deep neural networks is their ability to autonomously form non-linear combinations of the input features, which can be used in subsequent layers of the network. The analogon to this capability in inductive r ule learning is to learn a structured rule base, where the inputs are combined to learn new auxiliary concepts, which can then be used as inputs by subsequent rules. Yet, research on rule learning algorithms that have such capabilities is still in their infancy, which is - we would argue - one of the key impediments to substantial progress in this field. In this position paper, we want to draw attention to this unsolved problem, with a particular focus on previous work in predicate invention and multi-label rule learning
Rule-based models are often used for data analysis as they combine interpretability with predictive power. We present RuleKit, a versatile tool for rule learning. Based on a sequential covering induction algorithm, it is suitable for classification, regression, and survival problems. The presence of a user-guided induction facilitates verifying hypotheses concerning data dependencies which are expected or of interest. The powerful and flexible experimental environment allows straightforward investigation of different induction schemes. The analysis can be performed in batch mode, through RapidMiner plug-in, or R package. A documented Java API is also provided for convenience. The software is publicly available at GitHub under GNU AGPL-3.0 license.
156 - Bo Zhao , Peng Sun , Liming Fang 2021
Federated learning (FL) is a promising privacy-preserving distributed machine learning methodology that allows multiple clients (i.e., workers) to collaboratively train statistical models without disclosing private training data. Due to the character istics of data remaining localized and the uninspected on-device training process, there may exist Byzantine workers launching data poisoning and model poisoning attacks, which would seriously deteriorate model performance or prevent the model from convergence. Most of the existing Byzantine-robust FL schemes are either ineffective against several advanced poisoning attacks or need to centralize a public validation dataset, which is intractable in FL. Moreover, to the best of our knowledge, none of the existing Byzantine-robust distributed learning methods could well exert its power in Non-Independent and Identically distributed (Non-IID) data among clients. To address these issues, we propose FedCom, a novel Byzantine-robust federated learning framework by incorporating the idea of commitment from cryptography, which could achieve both data poisoning and model poisoning tolerant FL under practical Non-IID data partitions. Specifically, in FedCom, each client is first required to make a commitment to its local training data distribution. Then, we identify poisoned datasets by comparing the Wasserstein distance among commitments submitted by different clients. Furthermore, we distinguish abnormal local model updates from benign ones by testing each local models behavior on its corresponding data commitment. We conduct an extensive performance evaluation of FedCom. The results demonstrate its effectiveness and superior performance compared to the state-of-the-art Byzantine-robust schemes in defending against typical data poisoning and model poisoning attacks under practical Non-IID data distributions.
One major challenge in the medication of Parkinsons disease is that the severity of the disease, reflected in the patients motor state, cannot be measured using accessible biomarkers. Therefore, we develop and examine a variety of statistical models to detect the motor state of such patients based on sensor data from a wearable device. We find that deep learning models consistently outperform a classical machine learning model applied on hand-crafted features in this time series classification task. Furthermore, our results suggest that treating this problem as a regression instead of an ordinal regression or a classification task is most appropriate. For consistent model evaluation and training, we adopt the leave-one-subject-out validation scheme to the training of deep learning models. We also employ a class-weighting scheme to successfully mitigate the problem of high multi-class imbalances in this domain. In addition, we propose a customized performance measure that reflects the requirements of the involved medical staff on the model. To solve the problem of limited availability of high quality training data, we propose a transfer learning technique which helps to improve model performance substantially. Our results suggest that deep learning techniques offer a high potential to autonomously detect motor states of patients with Parkinsons disease.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا