ﻻ يوجد ملخص باللغة العربية
Eu$^{2+}$ is used to replace toxic Pb$^{2+}$ in metal halide perovskite nanocrystals (NCs). The synthesis implies injection of cesium oleate into a solution of europium (II) bromide at an experimentally determined optimum temperature of 130C and a reaction time of 60s. Structural analysis indicates the formation of spherical CsEuBr$_3$ nanoparticles with a mean size of 43nm. Using EuI$_2$ instead of EuBr$_2$ leads to the formation of 18nm CsI nanoparticles, while EuCl$_2$ does not show any reaction with cesium oleate forming 80nm EuCl2 nanoparticles. The obtained CsEuBr3 NCs exhibit bright blue emission at 413nm (FWHM 30 nm) with a room temperature photoluminescence quantum yield of 39%. The emission originates from the Laporte-allowed 4f7-4f65d1 transition of Eu$^{2+}$ and shows a PL decay time of 263ns. The long-term stability of the optical properties is observed, making inorganic lead-free CsEuBr$_3$ NCs promising deep blue emitters for optoelectronics.
We examine a simple model for Pb(In$_{1/2}$Nb$_{1/2}$)O$_3$ (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-sc
Fully-inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission and l
We investigate the crystal structure in multiferroic tetragonal perovskite Sr$_{1/2}$Ba$_{1/2}$MnO$_3$ with high accuracy of the order of 10$^{-3}$ Angstrom for an atomic displacement. The large atomic displacement for Mn ion from the centerosymmetri
The band-gaps of CsPbI$_3$ perovskite nanocrystals are measured by absorption spectroscopy at cryogenic temperatures. Anomalous band-gap shifts are observed in CsPbI$_3$ nanocubes and nanoplatelets, which are modeled accurately by band-gap renormaliz
The ground-state magnetic structure of EuNi$_{2}$As$_{2}$ was investigated by single-crystal neutron diffraction. At base temperature, the Eu$^{2+}$ moments are found to form an incommensurate antiferromagnetic spiral-like structure with a magnetic p