ترغب بنشر مسار تعليمي؟ اضغط هنا

DialogueTRM: Exploring the Intra- and Inter-Modal Emotional Behaviors in the Conversation

234   0   0.0 ( 0 )
 نشر من قبل Yuzhao Mao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Emotion Recognition in Conversations (ERC) is essential for building empathetic human-machine systems. Existing studies on ERC primarily focus on summarizing the context information in a conversation, however, ignoring the differentiated emotional behaviors within and across different modalities. Designing appropriate strategies that fit the differentiated multi-modal emotional behaviors can produce more accurate emotional predictions. Thus, we propose the DialogueTransformer to explore the differentiated emotional behaviors from the intra- and inter-modal perspectives. For intra-modal, we construct a novel Hierarchical Transformer that can easily switch between sequential and feed-forward structures according to the differentiated context preference within each modality. For inter-modal, we constitute a novel Multi-Grained Interactive Fusion that applies both neuron- and vector-grained feature interactions to learn the differentiated contributions across all modalities. Experimental results show that DialogueTRM outperforms the state-of-the-art by a significant margin on three benchmark datasets.



قيم البحث

اقرأ أيضاً

The success of emotional conversation systems depends on sufficient perception and appropriate expression of emotions. In a real-world conversation, we firstly instinctively perceive emotions from multi-source information, including the emotion flow of dialogue history, facial expressions, and personalities of speakers, and then express suitable emotions according to our personalities, but these multiple types of information are insufficiently exploited in emotional conversation fields. To address this issue, we propose a heterogeneous graph-based model for emotional conversation generation. Specifically, we design a Heterogeneous Graph-Based Encoder to represent the conversation content (i.e., the dialogue history, its emotion flow, facial expressions, and speakers personalities) with a heterogeneous graph neural network, and then predict suitable emotions for feedback. After that, we employ an Emotion-Personality-Aware Decoder to generate a response not only relevant to the conversation context but also with appropriate emotions, by taking the encoded graph representations, the predicted emotions from the encoder and the personality of the current speaker as inputs. Experimental results show that our model can effectively perceive emotions from multi-source knowledge and generate a satisfactory response, which significantly outperforms previous state-of-the-art models.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
Document-level relation extraction has attracted much attention in recent years. It is usually formulated as a classification problem that predicts relations for all entity pairs in the document. However, previous works indiscriminately represent int ra- and inter-sentential relations in the same way, confounding the different patterns for predicting them. Besides, they create a document graph and use paths between entities on the graph as clues for logical reasoning. However, not all entity pairs can be connected with a path and have the correct logical reasoning paths in their graph. Thus many cases of logical reasoning cannot be covered. This paper proposes an effective architecture, SIRE, to represent intra- and inter-sentential relations in different ways. We design a new and straightforward form of logical reasoning module that can cover more logical reasoning chains. Experiments on the public datasets show SIRE outperforms the previous state-of-the-art methods. Further analysis shows that our predictions are reliable and explainable. Our code is available at https://github.com/DreamInvoker/SIRE.
Sentiment Analysis and Emotion Detection in conversation is key in several real-world applications, with an increase in modalities available aiding a better understanding of the underlying emotions. Multi-modal Emotion Detection and Sentiment Analysi s can be particularly useful, as applications will be able to use specific subsets of available modalities, as per the available data. Current systems dealing with Multi-modal functionality fail to leverage and capture - the context of the conversation through all modalities, the dependency between the listener(s) and speaker emotional states, and the relevance and relationship between the available modalities. In this paper, we propose an end to end RNN architecture that attempts to take into account all the mentioned drawbacks. Our proposed model, at the time of writing, out-performs the state of the art on a benchmark dataset on a variety of accuracy and regression metrics.
We report on the experimental generation of spatially multiplexed picosecond 40-GHz pulse trains at telecommunication wavelengths by simultaneous intra-modal multiple four wave mixing and intermodal cross-phase modulation in km-long bi-modal and 6-LP -mode graded-index few-mode fibers. More precisely, an initial beat-signal injected into the fundamental mode is first nonlinearly compressed into well-separated pulses by means of an intra-modal multiple four-wave mixing process, while several group-velocity matched continuous-wave probe signals are injected into higher-order modes in such a way to develop similar pulsed profile thanks to an intermodal cross-phase modulation interaction. Specifically, by simultaneously exciting three higher-order modes (LP11, LP02 and LP31) of a 6-LP-mode fiber along group-velocity matched wavelengths with the fundamental mode, four spatially multiplexed 40-GHz picosecond pulse-trains are generated at selective wavelengths with negligible cross-talks between all the modes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا