ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Label Smoothing for Sequence to Sequence Problems

121   0   0.0 ( 0 )
 نشر من قبل Michal Lukasik
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over emph{well formed} relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also emph{semantically similar}. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.



قيم البحث

اقرأ أيضاً

Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was teful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.
In sequence to sequence learning, the self-attention mechanism proves to be highly effective, and achieves significant improvements in many tasks. However, the self-attention mechanism is not without its own flaws. Although self-attention can model e xtremely long dependencies, the attention in deep layers tends to overconcentrate on a single token, leading to insufficient use of local information and difficultly in representing long sequences. In this work, we explore parallel multi-scale representation learning on sequence data, striving to capture both long-range and short-range language structures. To this end, we propose the Parallel MUlti-Scale attEntion (MUSE) and MUSE-simple. MUSE-simple contains the basic idea of parallel multi-scale sequence representation learning, and it encodes the sequence in parallel, in terms of different scales with the help from self-attention, and pointwise transformation. MUSE builds on MUSE-simple and explores combining convolution and self-attention for learning sequence representations from more different scales. We focus on machine translation and the proposed approach achieves substantial performance improvements over Transformer, especially on long sequences. More importantly, we find that although conceptually simple, its success in practice requires intricate considerations, and the multi-scale attention must build on unified semantic space. Under common setting, the proposed model achieves substantial performance and outperforms all previous models on three main machine translation tasks. In addition, MUSE has potential for accelerating inference due to its parallelism. Code will be available at https://github.com/lancopku/MUSE
In sequence-to-sequence learning, the decoder relies on the attention mechanism to efficiently extract information from the encoder. While it is common practice to draw information from only the last encoder layer, recent work has proposed to use rep resentations from different encoder layers for diversified levels of information. Nonetheless, the decoder still obtains only a single view of the source sequences, which might lead to insufficient training of the encoder layer stack due to the hierarchy bypassing problem. In this work, we propose layer-wise cross-view decoding, where for each decoder layer, together with the representations from the last encoder layer, which serve as a global view, those from other encoder layers are supplemented for a stereoscopic view of the source sequences. Systematic experiments show that we successfully address the hierarchy bypassing problem and substantially improve the performance of sequence-to-sequence learning with deep representations on diverse tasks.
295 - Tao Gui , Jiacheng Ye , Qi Zhang 2020
Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel tw o-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.
We present an attention-based sequence-to-sequence neural network which can directly translate speech from one language into speech in another language, without relying on an intermediate text representation. The network is trained end-to-end, learni ng to map speech spectrograms into target spectrograms in another language, corresponding to the translated content (in a different canonical voice). We further demonstrate the ability to synthesize translated speech using the voice of the source speaker. We conduct experiments on two Spanish-to-English speech translation datasets, and find that the proposed model slightly underperforms a baseline cascade of a direct speech-to-text translation model and a text-to-speech synthesis model, demonstrating the feasibility of the approach on this very challenging task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا