ﻻ يوجد ملخص باللغة العربية
Proteins are the active working horses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, it covers an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
We develop a theoretical approach to the protein folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps in the protein folding problem a
We introduce the software tool NTRFinder to find the complex repetitive structure in DNA we call a nested tandem repeat (NTR). An NTR is a recurrence of two or more distinct tandem motifs interspersed with each other. We propose that nested tandem re
The ability to predict the evolution of a pathogen would significantly improve the ability to control, prevent, and treat disease. Despite significant progress in other problem spaces, deep learning has yet to contribute to the issue of predicting mu
From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading
The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypoth