ﻻ يوجد ملخص باللغة العربية
We consider monochromatic and isotropic photon emission from circular equatorial Kerr orbiters. We derive analytic expressions for the photon escape probability and the redshift-dependent total flux collected on the celestial sphere as a function of emission radius and black hole parameters. These calculations crucially involve the critical curve delineating the region of photon escape from that of photon capture in each emitters sky. This curve generalizes to finite orbital radius the usual Kerr critical curve and displays interesting features in the limit of high spin, which we investigate by developing a perturbative expansion about extremality. Although the innermost stable circular orbit appears to approach the event horizon for very rapidly spinning black holes, we find in this regime that the photon escape probability tends to $5/12+1/(sqrt{5}pi)arctansqrt{5/3}approx54.65%$. We also obtain a simple formula for the flux distribution received on the celestial sphere, which is nonzero. This confirms that the near-horizon geometry of a high-spin black hole is in principle observable. These results require us to introduce a novel type of near-horizon double-scaling limit. We explain the dip observed in the total flux at infinity as an imprint of the black hole: the black hole bite.
The region of spacetime near the event horizon of a black hole can be viewed as a deep potential well at large gravitational redshift relative to distant observers. However, matter orbiting in this region travels at relativistic speeds and can impart
This article explores the characteristics of ergoregion, horizons and circular geodesics around a Kerr-Newman-Kasuya black hole. We investigate the effect of spin and dyonic charge parameters on ergoregion, event horizon and static limit surface of t
The general relativistic Poynting-Robertson effect is a dissipative and non-linear dynamical system obtained by perturbing through radiation processes the geodesic motion of test particles orbiting around a spinning compact object, described by the K
We consider isotropic and monochromatic photon emissions from equatorial emitters moving along future-directed timelike geodesics in the near-horizon extremal Kerr (NHEK) and near-horizon near-extremal Kerr (near-NHEK) regions, to asymptotic infinity
Attempts to find black hole microstates using the Hamiltonian phase space approach have been made on the Schwarzschild spacetime. Since the Schwarzschild spacetime is also in the larger family of the Kerr spacetimes, and both are asymptotically flat,