ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Velocity Dispersion and Dynamical Mass of the Ultra-Diffuse Galaxy NGC 5846_UDG1 from the Keck Cosmic Web Imager

158   0   0.0 ( 0 )
 نشر من قبل Duncan Forbes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultra-diffuse galaxy in the NGC 5846 group (NGC 5846_UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Muller et al. published a velocity dispersion, based on a dozen of its GCs. Within their quoted uncertainties, the resulting dynamical mass allowed for either a dark matter free or a dark matter dominated galaxy. Here we present spectra from KCWI which reconfirms membership of the NGC 5846 group and reveals a stellar velocity dispersion for UDG1 of $sigma_{GC}$ = 17 $pm$ 2 km/s. Our dynamical mass, with a reduced uncertainty, indicates a very high contribution of dark matter within the effective radius. We also derive an enclosed mass from the locations and motions of the GCs using the Tracer Mass Estimator, finding a similar mass inferred from our stellar velocity dispersion. We find no evidence that the galaxy is rotating and is thus likely pressure-supported. The number of confirmed GCs, and the total number inferred for the system ($sim$45), suggest a total halo mass of $sim2 times 10^{11}$ M$_{odot}$. A cored mass profile is favoured when compared to our dynamical mass. Given its stellar mass of 1.1$times$10$^{8}$ M$_{odot}$, NGC 5846_UDG1 appears to be an ultra-diffuse galaxy with a dwarf-like stellar mass and an overly massive halo.



قيم البحث

اقرأ أيضاً

We present spatially-resolved two-dimensional maps and radial trends of the stellar populations and kinematics for a sample of six compact elliptical galaxies (cE) using spectroscopy from the Keck Cosmic Web Imager (KCWI). We recover their star forma tion histories, finding that all except one of our cEs are old and metal rich, with both age and metallicity decreasing toward their outer radii. We also use the integrated values within one effective radius to study different scaling relations. Comparing our cEs with others from the literature and from simulations we reveal the formation channel that these galaxies might have followed. All our cEs are fast rotators, with relatively high rotation values given their low ellipticites. In general, the properties of our cEs are very similar to those seen in the cores of more massive galaxies, and in particular, to massive compact galaxies. Five out of our six cEs are the result of stripping a more massive (compact or extended) galaxy, and only one cE is compatible with having been formed intrinsically as the low-mass, compact object that we see today. These results further confirm that cEs are a mixed-bag of galaxies that can be formed following different formation channels, reporting for the first time an evolutionary link within the realm of compact galaxies (at all stellar masses).
Using the Keck Cosmic Web Imager we obtain spectra of several globular clusters (GCs), ultra compact dwarfs (UCDs) and the inner halo starlight of M87, at a similar projected galactocentric radius of $sim$5 kpc. This enables us, for the first time, t o apply the same stellar population analysis to the GCs, UCDs and starlight consistently to derive ages, metallicities and alpha-element abundances in M87. We find evidence for a dual stellar population in the M87 halo light, i.e an $sim$80% component by mass which is old and metal-rich and a $sim$20% component which is old but metal-poor. Two red GCs share similar stellar populations to the halo light suggesting they may have formed contemporaneously with the dominant halo component. Three UCDs, and one blue GC, have similar stellar populations, with younger mean ages, lower metallicities and near solar alpha-element abundances. Combined with literature data, our findings are consistent with the scenario that UCDs are the remnant nucleus of a stripped galaxy. We further investigate the discrepancy in the literature for M87s kinematics at large radii, favouring a declining velocity dispersion profile. This work has highlighted the need for more self-consistent studies of galaxy halos.
We report on the design and performance of the Keck Cosmic Web Imager (KCWI), a general purpose optical integral field spectrograph that has been installed at the Nasmyth port of the 10 m Keck II telescope on Mauna Kea, HI. The novel design provides blue-optimized seeing-limited imaging from 350-560 nm with configurable spectral resolution from 1000 - 20000 in a field of view up to 20x33. Selectable volume phase holographic (VPH) gratings and high performance dielectric, multilayer silver and enhanced aluminum coatings provide end-to-end peak efficiency in excess of 45% while accommodating the future addition of a red channel that will extend wavelength coverage to 1 micron. KCWI takes full advantage of the excellent seeing and dark sky above Mauna Kea with an available nod-and-shuffle observing mode. The instrument is optimized for observations of faint, diffuse objects such as the intergalactic medium or cosmic web. In this paper, a detailed description of the instrument design is provided with measured performance results from the laboratory test program and ten nights of on-sky commissioning during the spring of 2017. The KCWI team is lead by Caltech and JPL (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (observatory interfaces).
Gravitational collapse in cosmological context produces an intricate cosmic web of voids, walls, filaments and nodes. The anisotropic nature of collisionless collapse leads to the emergence of an anisotropic velocity dispersion, or stress, that absor bs most of the kinetic energy after shell-crossing. In this paper, we measure this large-scale velocity dispersion tensor $sigma^2_{ij}$ in $N$-body simulations using the phase-space interpolation technique. We study the environmental dependence of the amplitude and anisotropy of the velocity dispersion tensor field, and measure its spatial correlation and alignment. The anisotropy of $sigma^2_{ij}$ naturally encodes the collapse history and thus leads to a parameter-free identification of the four dynamically distinct cosmic web components. We find this purely dynamical classification to be in good agreement with some of the existing classification methods. In particular, we demonstrate that $sigma^2_{ij}$ is well aligned with the large-scale tidal field. We further investigate the influence of small scale density fluctuations on the large scale velocity dispersion, and find that the measured amplitude and alignments are dominated by the largest perturbations and thus remain largely unaffected. We anticipate that these results will give important new insight into the anisotropic nature of gravitational collapse on large scales, and the emergence of anisotropic stress in the cosmic web.
Here, we present a kinematical analysis of the Virgo cluster ultra-diffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287s association both with the Virgo cluster and its globular cluster (GC) sy stem, measuring a recessional velocity of $1116 pm 2 mathrm{km s^{-1}}$. We measure a stellar velocity dispersion ($19 pm 6 mathrm{km s^{-1}}$) and infer both a dynamical mass ($1.11^{+0.81}_{-0.81} times 10^{9} mathrm{M_{odot}}$) and mass to light ratio ($13^{+11}_{-11}$) within the half light radius (4.4 kpc). This places VCC 1287 slightly above the well established relation for normal galaxies, with a higher mass to light ratio for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number -- dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive halos and a failed galaxy origin for at least some UDGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا