In this paper, we investigate physical-layer security (PLS) methods for proximity-based group-key establishment and proof of location. Fields of application include secure car-to-car communication, privacy-preserving and secure distance evidence for healthcare or location-based feature activation. Existing technologies do not solve the problem satisfactorily, due to communication restrictions, e.g., ultra-wide band (UWB) based time of flight measurements, or trusted hardware, e.g., using global navigation satellite system (GNSS) positioning data. We introduce PLS as a solution candidate. It is information theoretically secure, which also means post-quantum resistant, and has the potential to run on resource constrained devices with low latency. Furthermore, we use wireless channel properties of satellite-to-Earth links, demonstrate the first feasibility study using off-the-shelf hardware testbeds and present first evaluation results and future directions for research.