ترغب بنشر مسار تعليمي؟ اضغط هنا

InstantEmbedding: Efficient Local Node Representations

81   0   0.0 ( 0 )
 نشر من قبل Stefan Postavaru
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce InstantEmbedding, an efficient method for generating single-node representations using local PageRank computations. We theoretically prove that our approach produces globally consistent representations in sublinear time. We demonstrate this empirically by conducting extensive experiments on real-world datasets with over a billion edges. Our experiments confirm that InstantEmbedding requires drastically less computation time (over 9,000 times faster) and less memory (by over 8,000 times) to produce a single nodes embedding than traditional methods including DeepWalk, node2vec, VERSE, and FastRP. We also show that our method produces high quality representations, demonstrating results that meet or exceed the state of the art for unsupervised representation learning on tasks like node classification and link prediction.



قيم البحث

اقرأ أيضاً

Recent years have seen a rise in the development of representational learning methods for graph data. Most of these methods, however, focus on node-level representation learning at various scales (e.g., microscopic, mesoscopic, and macroscopic node e mbedding). In comparison, methods for representation learning on whole graphs are currently relatively sparse. In this paper, we propose a novel unsupervised whole graph embedding method. Our method uses spectral graph wavelets to capture topological similarities on each k-hop sub-graph between nodes and uses them to learn embeddings for the whole graph. We evaluate our method against 12 well-known baselines on 4 real-world datasets and show that our method achieves the best performance across all experiments, outperforming the current state-of-the-art by a considerable margin.
338 - Hejie Cui , Zijie Lu , Pan Li 2021
Graph neural networks (GNNs) have been widely used in various graph-related problems such as node classification and graph classification, where the superior performance is mainly established when natural node features are available. However, it is n ot well understood how GNNs work without natural node features, especially regarding the various ways to construct artificial ones. In this paper, we point out the two types of artificial node features,i.e., positional and structural node features, and provide insights on why each of them is more appropriate for certain tasks,i.e., positional node classification, structural node classification, and graph classification. Extensive experimental results on 10 benchmark datasets validate our insights, thus leading to a practical guideline on the choices between different artificial node features for GNNs on non-attributed graphs. The code is available at https://github.com/zjzijielu/gnn-exp/.
80 - Xu Chen , Ya Zhang , Ivor Tsang 2020
Graph neural networks (GNN), as a popular methodology for node representation learning on graphs, currently mainly focus on preserving the smoothness and identifiability of node representations. A robust node representation on graphs should further h old the stability property which means a node representation is resistant to slight perturbations on the input. In this paper, we introduce the stability of node representations in addition to the smoothness and identifiability, and develop a novel method called contrastive graph neural networks (CGNN) that learns robust node representations in an unsupervised manner. Specifically, CGNN maintains the stability and identifiability by a contrastive learning objective, while preserving the smoothness with existing GNN models. Furthermore, the proposed method is a generic framework that can be equipped with many other backbone models (e.g. GCN, GraphSage and GAT). Extensive experiments on four benchmarks under both transductive and inductive learning setups demonstrate the effectiveness of our method in comparison with recent supervised and unsupervised models.
72 - Shuai Yang , Hao Wang , Kui Yu 2021
Local causal structure learning aims to discover and distinguish direct causes (parents) and direct effects (children) of a variable of interest from data. While emerging successes have been made, existing methods need to search a large space to dist inguish direct causes from direct effects of a target variable T. To tackle this issue, we propose a novel Efficient Local Causal Structure learning algorithm, named ELCS. Specifically, we first propose the concept of N-structures, then design an efficient Markov Blanket (MB) discovery subroutine to integrate MB learning with N-structures to learn the MB of T and simultaneously distinguish direct causes from direct effects of T. With the proposed MB subroutine, ELCS starts from the target variable, sequentially finds MBs of variables connected to the target variable and simultaneously constructs local causal structures over MBs until the direct causes and direct effects of the target variable have been distinguished. Using eight Bayesian networks the extensive experiments have validated that ELCS achieves better accuracy and efficiency than the state-of-the-art algorithms.
Unsupervised node embedding methods (e.g., DeepWalk, LINE, and node2vec) have attracted growing interests given their simplicity and effectiveness. However, although these methods have been proved effective in a variety of applications, none of the e xisting work has analyzed the robustness of them. This could be very risky if these methods are attacked by an adversarial party. In this paper, we take the task of link prediction as an example, which is one of the most fundamental problems for graph analysis, and introduce a data positioning attack to node embedding methods. We give a complete characterization of attackers utilities and present efficient solutions to adversarial attacks for two popular node embedding methods: DeepWalk and LINE. We evaluate our proposed attack model on multiple real-world graphs. Experimental results show that our proposed model can significantly affect the results of link prediction by slightly changing the graph structures (e.g., adding or removing a few edges). We also show that our proposed model is very general and can be transferable across different embedding methods. Finally, we conduct a case study on a coauthor network to better understand our attack method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا