ﻻ يوجد ملخص باللغة العربية
This paper presents new results on the identities satisfied by the hypoplactic monoid. We show how to embed the hypoplactic monoid of any rank strictly greater than 2 (including infinite rank) into a direct product of copies of the hypoplactic monoid of rank 2. This confirms that all hypoplactic monoids of rank greater than or equal to 2 satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the variety generated by the hypoplactic monoid has finite axiomatic rank, by giving a finite basis for it.
This paper presents new results on the identities satisfied by the sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This conf
We exhibit a faithful representation of the plactic monoid of every finite rank as a monoid of upper triangular matrices over the tropical semiring. This answers a question first posed by Izhakian and subsequently studied by several authors. A conseq
We exhibit faithful representations of the hypoplactic, stalactic, taiga, sylvester, Baxter and right patience sorting monoids of each finite rank as monoids of upper triangular matrices over any semiring from a large class including the tropical sem
We establish necessary and sufficient conditions for a semigroup identity to hold in the monoid of $ntimes n$ upper triangular tropical matrices, in terms of equivalence of certain tropical polynomials. This leads to an algorithm for checking whether
The 6-element Brandt monoid $B_2^1$ admits a unique addition under which it becomes an additively idempotent semiring. We show that this addition is a term operation of $B_2^1$ as an inverse semigroup. As a consequence, we exhibit an easy proof that