ﻻ يوجد ملخص باللغة العربية
I report the discovery that the 9th-magnitude Galactic-halo star BD+14$^circ$3061 is a member of the rare class of luminous metal-poor yellow post-AGB stars. Its Gaia DR2 parallax implies an absolute magnitude of $M_V=-3.44pm0.27$, and it is a very high-velocity star moving in a retrograde Galactic orbit. BD+14$^circ$3061 is a field analog of the half-dozen yellow PAGB stars known in Galactic globular clusters, which have closely similar absolute magnitudes. These objects are the visually brightest members of old stellar populations; their apparently narrow luminosity function makes them potentially useful as Population II standard candles. The spectral-energy distribution of BD+14$^circ$3061 out to $22,mu$m shows no evidence for circumstellar dust. The star is a low-amplitude semi-regular pulsating variable, with typical periods of 30-32 days. A radial-velocity study suggests that it is a spectroscopic binary with a period of 429.6 days, making it similar to known binary yellow PAGB stars such as HD 46703 and BD+39$^circ$4926.
We report discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and Mv=-3.46, this yellow PAGB star is by a small margin the
We aim at describing and understanding binary interaction processes in systems with very evolved companions. Here, we focus on understanding the origin and determining the properties of the high-velocity outflow observed in one such system. We presen
We report the discovery of a luminous yellow post-asymptotic-giant-branch (PAGB) star in the globular cluster (GC) M19 (NGC 6273), identified during our uBVI survey of Galactic GCs. The uBVI photometric system is optimized to detect stars with large
Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is a A-type ($T_{rm eff}$ = 8250 $pm$
This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. Lead (Pb) is the final product of the s-process nucleosynthesis and is predic