ترغب بنشر مسار تعليمي؟ اضغط هنا

Observables of spheroidal magnetized Strange Stars

332   0   0.0 ( 0 )
 نشر من قبل Aurora Perez Martinez Prof
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study stable spheroidal configurations of magnetized Strange Stars using an axially symmetric metric in spherical coordinates that uses a gamma parameter to link the anisotropy in the Equation of State due to the magnetic field with the deformation of the star. The stars are composed by magnetized Strange Quark Matter described within the framework of the MIT-Bag model. Their masses, radii, eccentricity, redshift and mass quadrupole moment are computed. Results are compared with spherical Strange Stars solutions obtained with TOV equations and observational data of Strange Stars candidates. In the spheroidal model the observables depend directly on the deformation of the stars, and even though it is small, the observables strongly deviate from the corresponding spherical configurations. Thus, the highest values of the mass quadrupole moment correspond to the intermediate mass regime. These differences might allow to discriminate between models with/without magnetic field when compared with observations.



قيم البحث

اقرأ أيضاً

423 - Debabrata Deb 2021
We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars and strange quark stars, made of strongly magnetized matter. The neutron stars are described by SLy equation of state, the strange quark stars by an equation of state based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered, a radial orientation, where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic field strength and increase in size, since the repulsive, effective anisotropic force increases in this case. In the case of a radially orientated magnetic field, however, the masses and radii of the stars decrease with increasing magnetic field strength, because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models.
114 - Omar G. Benvenuto 2013
We perform 1D calculations of neutrino opacities inside a young strange star assumed to be the result of the conversion process of a normal neutron object. We evaluate the deleptonization and cooling timescales, which happen to be longer than the pro to-NS analogues, and preliminary address the features of the emerging neutrino signal.
253 - F. Weber 2011
This paper provides an overview of the possible role of Quantum Chromo Dynamics (QDC) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the co res of neutron stars. There is also the theoretical possibility that a significantly large number of up, down, and strange quarks may settle down in a new state of matter known as strange quark matter, which, by hypothesis, could be more stable than atomic nuclei. In the latter case new classes of self-bound, color superconducting objects, ranging from strange quark nuggets to strange quark stars, should exist. The properties of such objects will be reviewed along with the possible existence of deconfined quarks in neutron stars. Implications for observational astrophysics are pointed out.
Pulsars are highly magnetized and rapidly rotating neutron stars. The magnetic field can reach the critical magnetic field from which quantum effects of the vacuum becomes relevant, giving rise to magnetooptic properties of vacuum characterized as an effective non linear medium. One spectacular consequence of this prediction is a macroscopic friction that leads to an additional contribution in the spindown of pulsars. In this paper, we highlight some observational consequences and in particular derive new constraints on the parameters of the Crab pulsar and J0540-6919.
In this work we consider strange stars formed by quark matter in the color-flavor-locked (CFL) phase of color superconductivity. The CFL phase is described by a Nambu-Jona-Lasinio model with four-fermion vector and diquark interaction channels. The e ffect of the color superconducting medium on the gluons are incorporated into the model by including the gluon self-energy in the thermodynamic potential. We construct parametrizations of the model by varying the vector coupling $G_V$ and comparing the results to the data on tidal deformability from the GW170817 event, the observational data on maximum masses from massive pulsars such as the MSP J0740+6620, and the mass/radius fits to NICER data for PSR J003+0451. Our results points out to windows for the $G_V$ parameter space of the model, with and without gluon effects included, that are compatible with all these astrophysical constraints, namely, $0.21<G_V/G_S<0.4$, and $0.02<G_V/G_S<0.1$, respectively. We also observe a strong correlation between the tidal deformabilites of the GW170817 event and $G_V$. Our results indicate that strange stars cannot be ruled out in collisions of compact binaries from the structural point of view.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا