ﻻ يوجد ملخص باللغة العربية
In the present study, we investigate a dynamical mode beyond the gyrotropic (G) motion of a magnetic vortex core in a confined magnetic disk of a nano-pillar spin torque nano oscillator. It is characterized by the in-plane circular precession associated to a C-shaped magnetization distribution. We show a transition between G and C-state mode which is found to be purely stochastic in a current-controllable range. Supporting our experimental findings with micromagnetic simulations, we believe that the results provide novel opportunities for the dynamic and stochastic control of STOs, which could be interesting to be implemented for example in neuromorphic networks.
Vortex based spin torque nano oscillators (STVOs) can present more complex dynamics than the spin torque induced gyrotropic (G) motion of the vortex core. The respective dynamic modes and the transition between them can be controlled by experimental
We study the agility of current-tunable oscillators based on a magnetic vortex orbiting around a point contact in spin-valves. Theory predicts frequency-tuning by currents occurs at constant orbital radius, so an exceptional agility is anticipated. T
Low frequency noise close to the carrier remains little explored in spin torque nano oscillators. However, it is crucial to investigate as it limits the oscillators frequency stability. This work addresses the low offset frequency flicker noise of a
This paper describes a numerical experiment, based on full micromagnetic simulations of current-driven magnetization dynamics in nanoscale spin valves, to identify the origins of spectral linewidth broadening in spin torque oscillators. Our numerical
We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. T