ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Equilibrium Effects of Molecular Motors on Polymers

149   0   0.0 ( 0 )
 نشر من قبل Davide Marenduzzo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a generic coarse-grained model to describe molecular motors acting on polymer substrates, mimicking, for example, RNA polymerase on DNA or kinesin on microtubules. The polymer is modeled as a connected chain of beads; motors are represented as freely diffusing beads which, upon encountering the substrate, bind to it through a short-ranged attractive potential. When bound, motors and polymer beads experience an equal and opposite active force, directed tangential to the polymer; this leads to motion of the motors along the polymer contour. The inclusion of explicit motors differentiates our model from other recent active polymer models. We study, by means of Langevin dynamics simulations, the effect of the motor activity on both the conformational and dynamical properties of the substrate. We find that activity leads, in addition to the expected enhancement of polymer diffusion, to an effective reduction of its persistence length. We discover that this effective softening is a consequence of the emergence of double-folded branches, or hairpins, and that it can be tuned by changing the number of motors or the force they generate. Finally, we investigate the effect of the motors on the probability of knot formation. Counter-intuitively our simulations reveal that, even though at equilibrium a more flexible substrate would show an increased knotting probability, motor activity leads to a marked decrease in the occurrence of knotted conformations with respect to equilibrium.



قيم البحث

اقرأ أيضاً

The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular w e show that the density of motors along the tube can exhibit shocks, inverse shocks and plateaux, depending on parameters which could in principle be probed experimentally. In addition the phase diagram exhibits interesting reentrant behavior.
The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic non-equilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model (DBM). Two effec tive approaches are presented, one tracking the evolution of the emph{local} TNE effects and the other focussing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow. It is found that, both the compressibility effects and the emph{global} TNE intensity show opposite trends in the initial and the later stages of the RTI. Compressibility delays the initial stage of RTI and accelerates the later stage. Meanwhile, the TNE characteristics are generally enhanced by the compressibility, especially in the later stage. The global or mean thermodynamic non-equilibrium indicators provide physical criteria to discriminate between the two stages of the RTI.
91 - Chiu Fan Lee 2017
Self-assembling, semi-flexible polymers are ubiquitous in biology and technology. However, there remain conflicting accounts of the equilibrium kinetics for such an important system. Here, by focusing on a dynamical description of a minimal model in an overdamped environment, I identify the correct kinetic scheme that describes the system at equilibrium in the limits of high bonding energy and dilute concentration.
It is known from the wave-like motion of microtubules in motility assays that the piconewton forces that motors produce can be sufficient to bend the filaments. In cellular phenomena such as cytosplasmic streaming, molecular motors translocate along cytoskeletal filaments, carrying cargo which entrains fluid. When large numbers of such forced filaments interact through the surrounding fluid, as in particular stages of oocyte development in $Drosophila~melanogaster$, complex dynamics are observed, but the detailed mechanics underlying them has remained unclear. Motivated by these observations, we study here perhaps the simplest model for these phenomena: an elastic filament, pinned at one end, acted on by a molecular motor treated as a point force. Because the force acts tangential to the filament, no matter what its shape, this follower-force problem is intrinsically non-variational, and thereby differs fundamentally from Euler buckling, where the force has a fixed direction, and which, in the low Reynolds number regime, ultimately leads to a stationary, energy-minimizing shape. Through a combination of linear stability theory, analytical study of a solvable simplified two-link model, and numerical studies of the full elastohydrodynamic equations of motion we elucidate the Hopf bifurcation that occurs with increasing forcing of a filament, leading to flapping motion analogous to the high Reynolds number oscillations of a garden hose with a free end.
We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of struct ural defects, correlated at large distances r according to a power law sim r^{-a}. In particular, we are interested in the ratio g(f) of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double varepsilon=4-d, delta=4-a-expansion. We find an increase of g(f) with an increasing delta. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا