ﻻ يوجد ملخص باللغة العربية
We study a problem of $pi$ production in heavy ion collisions in the context of the Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model. We generated nucleon densities using two different models, the Skyrme-Hartree-Fock (SHF) model and configuration interaction shell model (SM). Indeed, inter-nucleon correlations are explicitly taken into account in SM, while they are averaged in the SHF model. As an application of our theoretical frameworks, we calculated the $pi^{-}$ and $pi^{+}$ yields in collisions of nuclei with $A = 30-40$ nucleons. We used different harmonic oscillator lengths $b_{HO}$ to generate the harmonic oscillator basis for SM in order to study both theoretical and experimental cases. It is found that SM framework with $b_{HO}$ = 2.5 fm and SHF can be distinguished by the yield of $pi$ mesons, in this case the density distribution calculated by the shell model produces more $pi$ in the collision. In comparison, SM with $b_{HO}$ = 2.0 fm is characterized from SHF by the double $pi^{-}/pi^{+}$ ratios with different large impact parameters, from which one can find the double $pi^{-}/pi^{+}$ ratios of SM change smoother and are less than those of SHF.
Three typical algorithms of Pauli blocking in the quantum molecular dynamics type models are investigated in the nuclear matter, the nucleus and the heavy ion collisions. The calculations in nuclear matter show that the blocking ratios obtained with
By considering three different Nucleon-Nucleon (NN) elastic differential cross sections: the Cugnon emph{et al.} parameterized differential cross section [Nucl. Instrum. Methods Phys. Res., Sect. textbf{B111}, 215 (1996)], and the differential cross
Transverse-mass spectra of protons, pions and kaons produced in collisions of heavy nuclei are analyzed within the model of 3-fluid dynamics. It was demonstrated that this model consistently reproduces these spectra in wide ranges of incident energie
Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics a
We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We imp