ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient chaos in time-delayed systems subjected to parameter drift

114   0   0.0 ( 0 )
 نشر من قبل Julia Cantis\\'an G\\'omez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

External and internal factors may cause a systems parameter to vary with time before it stabilizes. This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic attractor tip to other states with a certain probability. This causes the appearance of the phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of transient lifetimes, unlike in other non-delayed systems where normal distributions have been found to govern the process. Furthermore, we analyze how the parameter change rate influences the tipping probability, and we derive a scaling law relating the parameter value for which the tipping takes place and the lifetime of the transient chaos with the parameter change rate.



قيم البحث

اقرأ أيضاً

Non-autonomous dynamical systems help us to understand the implications of real systems which are in contact with their environment as it actually occurs in nature. Here, we focus on systems where a parameter changes with time at small but non-neglig ible rates before settling at a stable value, by using the Lorenz system for illustration. This kind of systems commonly show a long-term transient dynamics previous to a sudden transition to a steady state. This can be explained by the crossing of a bifurcation in the associated frozen-in system. We surprisingly uncover a scaling law relating the duration of the transient to the rate of change of the parameter for a case where a chaotic attractor is involved. Additionally, we analyze the viability of recovering the transient dynamics by reversing the parameter to its original value, as an alternative to the control theory for systems with parameter drifts. We obtain the relationship between the paramater change rate and the number of trajectories that tip back to the initial attractor corresponding to the transient state.
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding charac teristic equation with two time delays. An analytic expression for the stabilizing control strength is derived in terms of original system parameters and the time delay of the control. Theoretical and numerical results show that the interplay between the control strength and two time delays provides a number of regions in the parameter space where the time-delayed feedback control can successfully stabilize an otherwise unstable steady state.
Transient chaos is a characteristic behavior in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations the escapes are highly undesirable, so that it would be necessary to avoid such a situation. In this paper we apply a control method known as partial control that allows one to prevent the escapes of the trajectories to the external attractors, keeping the trajectories in the chaotic region forever. To illustrate how the method works, we have chosen the Lorenz system for a choice of parameters where transient chaos appears, as a paradigmatic example in nonlinear dynamics. We analyze three quite different ways to implement the method. First, we apply this method by building a 1D map using the successive maxima of one of the variables. Next, we implement it by building a 2D map through a Poincar{e} section. Finally, we built a 3D map, which has the advantage of using a fixed time interval between application of the control, which can be useful for practical applications.
130 - Ru-Hai Du , Shi-Xian Qu , 2018
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between the regimes of low- and high-dimensional chaos. That is, the emergence of high-dimensional chaos is preceded by the systems settling into a totally nonchaotic regime. This is characteristically distinct from the situation in smooth dynamical systems where high-dimensional chaos emerges directly and smoothly from low-dimensional chaos. We carry out an analysis to elucidate the underlying mechanism for the abrupt emergence and disappearance of the periodic attractors and provide strong numerical support for the typicality of the transition route in the pertinent two-dimensional parameter space. The finding has implications to applications where high-dimensional and robust chaos is desired.
Time-delay systems are, in many ways, a natural set of dynamical systems for natural scientists to study because they form an interface between abstract mathematics and data. However, they are complicated because past states must be sensibly incorpor ated into the dynamical system. The primary goal of this paper is to begin to isolate and understand the effects of adding time-delay coordinates to a dynamical system. The key results include (i) an analytical understanding regarding extreme points of a time-delay dynamical system framework including an invariance of entropy and the variance of the Kaplan-Yorke formula with simple time re-scalings; (ii) computational results from a time-delay mapping that forms a path between dynamical systems dependent upon the most distant and the most recent past; (iii) the observation that non-trivial mixing of past states can lead to high-dimensional, high-entropy dynamics that are not easily reduced to low-dimensional dynamical systems; (iv) the observed phase transition (bifurcation) between low-dimensional, reducible dynamics and high or infinite-dimensional dynamics; and (v) a convergent scaling of the distribution of Lyapunov exponents, suggesting that the infinite limit of delay coordinates in systems such are the ones we study will result in a continuous or (dense) point spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا