ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly mixing systems are almost strongly mixing of all orders

82   0   0.0 ( 0 )
 نشر من قبل Rigoberto Zelada
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that any strongly mixing action of a countable abelian group on a probability space has higher order mixing properties. This is achieved via introducing and utilizing $mathcal R$-limits, a notion of convergence which is based on the classical Ramsey Theorem. $mathcal R$-limits are intrinsically connected with a new combinatorial notion of largeness which is similar to but has stronger properties than the classical notions of uniform density one and IP$^*$. While the main goal of this paper is to establish a $textit{universal}$ property of strongly mixing actions of countable abelian groups, our results, when applied to $mathbb Z$-actions, offer a new way of dealing with strongly mixing transformations. In particular, we obtain several new characterizations of strong mixing for $mathbb Z$-actions, including a result which can be viewed as the analogue of the weak mixing of all orders property established by Furstenberg in the course of his proof of Szemeredis theorem. We also demonstrate the versatility of $mathcal R$-limits by obtaining new characterizations of higher order weak and mild mixing for actions of countable abelian groups.



قيم البحث

اقرأ أيضاً

We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagr ams with quasipositive canonical surface (the surface produced by Seiferts algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality.
We show that a topologically mixing $C^infty$ Anosov flow on a 3 dimensional compact manifold is exponential mixing with respect to any equilibrium measure with Holder potential.
The family of pairwise independently determined (PID) systems, i.e. those for which the independent joining is the only self joining with independent 2-marginals, is a class of systems for which the long standing open question by Rokhlin, of whether mixing implies mixing of all orders, has a positive answer. We show that in the class of weakly mixing PID one finds a positive answer for another long-standing open problem, whether the multiple ergodic averages begin{equation*} frac 1 Nsum_{n=0}^{N-1}f_1(T^nx)cdots f_d(T^{dn}x), quad Nto infty, end{equation*} almost surely converge.
We introduce random towers to study almost sure rates of correlation decay for random partially hyperbolic attractors. Using this framework, we obtain abstract results on almost sure exponential, stretched exponential and polynomial correlation decay rates. We then apply our results to small random perturbations of Axiom A attractors, small perturbations of derived from Anosov partially hyperbolic systems and to solenoidal attractors with random intermittency.
353 - Jane Wang 2014
In ergodic theory, given sufficient conditions on the system, every weak mixing $mathbb{N}$-action is strong mixing along a density one subset of $mathbb{N}$. We ask if a similar statement holds in topological dynamics with density one replaced with thickness. We show that given sufficient initial conditions, a group action in topological dynamics is strong mixing on a thick subset of the group if and only if the system is $k$-transitive for all $k$, and conclude that an analogue of this statement from ergodic theory holds in topological dynamics when dealing with abelian groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا