ﻻ يوجد ملخص باللغة العربية
The digital spread of misinformation is one of the leading threats to democracy, public health, and the global economy. Popular strategies for mitigating misinformation include crowdsourcing, machine learning, and media literacy programs that require social media users to classify news in binary terms as either true or false. However, research on peer influence suggests that framing decisions in binary terms can amplify judgment errors and limit social learning, whereas framing decisions in probabilistic terms can reliably improve judgments. In this preregistered experiment, we compare online peer networks that collaboratively evaluate the veracity of news by communicating either binary or probabilistic judgments. Exchanging probabilistic estimates of news veracity substantially improved individual and group judgments, with the effect of eliminating polarization in news evaluation. By contrast, exchanging binary classifications reduced social learning and entrenched polarization. The benefits of probabilistic social learning are robust to participants education, gender, race, income, religion, and partisanship.
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb
The spreading of unsubstantiated rumors on online social networks (OSN) either unintentionally or intentionally (e.g., for political reasons or even trolling) can have serious consequences such as in the recent case of rumors about Ebola causing disr
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work,
The Turing test aimed to recognize the behavior of a human from that of a computer algorithm. Such challenge is more relevant than ever in todays social media context, where limited attention and technology constrain the expressive power of humans, w
An important challenge in the process of tracking and detecting the dissemination of misinformation is to understand the political gap between people that engage with the so called fake news. A possible factor responsible for this gap is opinion pola