ﻻ يوجد ملخص باللغة العربية
Thanks to the recent discovery on the magic-angle bilayer graphene, twistronics is quickly becom11 ing a burgeoning field in condensed matter physics. This letter expands the realm of twistronics to acoustics by introducing twisted bilayer phononic graphene, which remarkably also harbors the magic angle, evidenced by the associated ultra-flat bands. Beyond mimicking quantum mechanical behaviors of twisted bilayer graphene, we show that their acoustic counterpart offers a considerably more straightforward and robust way to alter the interlayer hopping strength, enabling us to unlock magic angles (> 3 degrees) inaccessible in classical twisted bilayer graphene. This study, not only establishes the acoustical analog of twisted (magic-angle) bilayer graphene, providing a testbed more easily accessible to probe the interaction and misalignment between stacked 2D materials, but also points out the direction to a new phononic crystal design paradigm that could benefit applications such as enhanced acoustic emission and sensing.
Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetical
A purely electronic mechanism is proposed for the unconventional superconductivity recently observed in twisted bilayer graphene (tBG) close to the magic angle. Using the Migdal-Eliashberg framework on a one parameter effective lattice model for tBG
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s
Magic-angle twisted bilayer graphene (MtBLG) has proven to be an extremely promising new platform to realize and study a host of emergent quantum phases arising from the strong correlations in its narrow bandwidth flat band. In this regard, thermal t
Interactions among electrons and the topology of their energy bands can create novel quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances where topological phases emerg