ترغب بنشر مسار تعليمي؟ اضغط هنا

The LSST DESC DC2 Simulated Sky Survey

148   0   0.0 ( 0 )
 نشر من قبل Katrin Heitmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the simulated sky survey underlying the second data challenge (DC2) carried out in preparation for analysis of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) by the LSST Dark Energy Science Collaboration (LSST DESC). Significant connections across multiple science domains will be a hallmark of LSST; the DC2 program represents a unique modeling effort that stresses this interconnectivity in a way that has not been attempted before. This effort encompasses a full end-to-end approach: starting from a large N-body simulation, through setting up LSST-like observations including realistic cadences, through image simulations, and finally processing with Rubins LSST Science Pipelines. This last step ensures that we generate data products resembling those to be delivered by the Rubin Observatory as closely as is currently possible. The simulated DC2 sky survey covers six optical bands in a wide-fast-deep (WFD) area of approximately 300 deg^2 as well as a deep drilling field (DDF) of approximately 1 deg^2. We simulate 5 years of the planned 10-year survey. The DC2 sky survey has multiple purposes. First, the LSST DESC working groups can use the dataset to develop a range of DESC analysis pipelines to prepare for the advent of actual data. Second, it serves as a realistic testbed for the image processing software under development for LSST by the Rubin Observatory. In particular, simulated data provide a controlled way to investigate certain image-level systematic effects. Finally, the DC2 sky survey enables the exploration of new scientific ideas in both static and time-domain cosmology.



قيم البحث

اقرأ أيضاً

This paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choo sing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included.
In preparation for cosmological analyses of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), the LSST Dark Energy Science Collaboration (LSST DESC) has created a 300 deg$^2$ simulated survey as part of an effort called Data Chall enge 2 (DC2). The DC2 simulated sky survey, in six optical bands with observations following a reference LSST observing cadence, was processed with the LSST Science Pipelines (19.0.0). In this Note, we describe the public data release of the resulting object catalogs for the coadded images of five years of simulated observations along with associated truth catalogs. We include a brief description of the major features of the available data sets. To enable convenient access to the data products, we have developed a web portal connected to Globus data services. We describe how to access the data and provide example Jupyter Notebooks in Python to aid first interactions with the data. We welcome feedback and questions about the data release via a GitHub repository.
Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmologica l parameters from LSST data. Each of the cosmological probes for LSST is heavily impacted by the choice of observing strategy. This white paper is written by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy that will benefit all cosmological analyses with LSST. It is accompanied by the DESC DDF (Deep Drilling Fields) white paper (Scolnic et al.). We use a variety of metrics to understand the effects of the observing strategy on measurements of weak lensing, large-scale structure, clusters, photometric redshifts, supernovae, strong lensing and kilonovae. In order to reduce systematic uncertainties, we conclude that the current baseline observing strategy needs to be significantly modified to result in the best possible cosmological constraints. We provide some key recommendations: moving the WFD (Wide-Fast-Deep) footprint to avoid regions of high extinction, taking visit pairs in different filters, changing the 2x15s snaps to a single exposure to improve efficiency, focusing on strategies that reduce long gaps (>15 days) between observations, and prioritizing spatial uniformity at several intervals during the 10-year survey.
169 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy inst itutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا